Properties

Label 2-18e2-4.3-c2-0-11
Degree $2$
Conductor $324$
Sign $-0.651 - 0.758i$
Analytic cond. $8.82836$
Root an. cond. $2.97125$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.81 + 0.834i)2-s + (2.60 + 3.03i)4-s − 6.14·5-s + 0.590i·7-s + (2.20 + 7.68i)8-s + (−11.1 − 5.12i)10-s + 17.4i·11-s + 1.78·13-s + (−0.492 + 1.07i)14-s + (−2.39 + 15.8i)16-s − 16.9·17-s + 19.5i·19-s + (−16.0 − 18.6i)20-s + (−14.5 + 31.7i)22-s + 7.93i·23-s + ⋯
L(s)  = 1  + (0.908 + 0.417i)2-s + (0.651 + 0.758i)4-s − 1.22·5-s + 0.0843i·7-s + (0.276 + 0.961i)8-s + (−1.11 − 0.512i)10-s + 1.58i·11-s + 0.137·13-s + (−0.0352 + 0.0766i)14-s + (−0.149 + 0.988i)16-s − 0.995·17-s + 1.02i·19-s + (−0.801 − 0.932i)20-s + (−0.662 + 1.44i)22-s + 0.344i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $-0.651 - 0.758i$
Analytic conductor: \(8.82836\)
Root analytic conductor: \(2.97125\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{324} (163, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :1),\ -0.651 - 0.758i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.775848 + 1.69022i\)
\(L(\frac12)\) \(\approx\) \(0.775848 + 1.69022i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.81 - 0.834i)T \)
3 \( 1 \)
good5 \( 1 + 6.14T + 25T^{2} \)
7 \( 1 - 0.590iT - 49T^{2} \)
11 \( 1 - 17.4iT - 121T^{2} \)
13 \( 1 - 1.78T + 169T^{2} \)
17 \( 1 + 16.9T + 289T^{2} \)
19 \( 1 - 19.5iT - 361T^{2} \)
23 \( 1 - 7.93iT - 529T^{2} \)
29 \( 1 + 6.35T + 841T^{2} \)
31 \( 1 + 31.9iT - 961T^{2} \)
37 \( 1 - 58.2T + 1.36e3T^{2} \)
41 \( 1 - 5.33T + 1.68e3T^{2} \)
43 \( 1 + 39.1iT - 1.84e3T^{2} \)
47 \( 1 + 11.1iT - 2.20e3T^{2} \)
53 \( 1 - 35.8T + 2.80e3T^{2} \)
59 \( 1 - 24.1iT - 3.48e3T^{2} \)
61 \( 1 - 75.8T + 3.72e3T^{2} \)
67 \( 1 - 36.7iT - 4.48e3T^{2} \)
71 \( 1 - 87.8iT - 5.04e3T^{2} \)
73 \( 1 + 60.0T + 5.32e3T^{2} \)
79 \( 1 - 37.1iT - 6.24e3T^{2} \)
83 \( 1 + 76.2iT - 6.88e3T^{2} \)
89 \( 1 + 27.5T + 7.92e3T^{2} \)
97 \( 1 + 26.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.86119744132037729771652354103, −11.23315111007215879623493524387, −9.972780765405770054220815021228, −8.586543390963309434616874085509, −7.61107371369650091585527027362, −7.05197028698990940083385452721, −5.76402015053504925644958479465, −4.42664485140482178386009563521, −3.90537198580977447128822548668, −2.27371969722570352120463837926, 0.64591862760490925403838855967, 2.77917679961882609003043094855, 3.80392860387399370354517765240, 4.73747546398372825344894007487, 6.03603602576612333745984106099, 7.00981403927853196860410831306, 8.165495705807101037806057889756, 9.160392423062667189795296740328, 10.68927065988096871046987572890, 11.22694357732818149352743911628

Graph of the $Z$-function along the critical line