L(s) = 1 | − 9·5-s + 7-s − 63·11-s + 28·13-s + 144·17-s + 196·19-s − 126·23-s + 125·25-s + 126·29-s + 259·31-s − 9·35-s + 772·37-s + 450·41-s + 34·43-s + 54·47-s + 343·49-s − 1.38e3·53-s + 567·55-s − 180·59-s + 280·61-s − 252·65-s + 586·67-s + 1.00e3·71-s + 322·73-s − 63·77-s − 440·79-s − 999·83-s + ⋯ |
L(s) = 1 | − 0.804·5-s + 0.0539·7-s − 1.72·11-s + 0.597·13-s + 2.05·17-s + 2.36·19-s − 1.14·23-s + 25-s + 0.806·29-s + 1.50·31-s − 0.0434·35-s + 3.43·37-s + 1.71·41-s + 0.120·43-s + 0.167·47-s + 49-s − 3.59·53-s + 1.39·55-s − 0.397·59-s + 0.587·61-s − 0.480·65-s + 1.06·67-s + 1.68·71-s + 0.516·73-s − 0.0932·77-s − 0.626·79-s − 1.32·83-s + ⋯ |
Λ(s)=(=(104976s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(104976s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
104976
= 24⋅38
|
Sign: |
1
|
Analytic conductor: |
365.445 |
Root analytic conductor: |
4.37225 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 104976, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
2.708734088 |
L(21) |
≈ |
2.708734088 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1+9T−44T2+9p3T3+p6T4 |
| 7 | C22 | 1−T−342T2−p3T3+p6T4 |
| 11 | C22 | 1+63T+2638T2+63p3T3+p6T4 |
| 13 | C22 | 1−28T−1413T2−28p3T3+p6T4 |
| 17 | C2 | (1−72T+p3T2)2 |
| 19 | C2 | (1−98T+p3T2)2 |
| 23 | C22 | 1+126T+3709T2+126p3T3+p6T4 |
| 29 | C22 | 1−126T−8513T2−126p3T3+p6T4 |
| 31 | C22 | 1−259T+37290T2−259p3T3+p6T4 |
| 37 | C2 | (1−386T+p3T2)2 |
| 41 | C22 | 1−450T+133579T2−450p3T3+p6T4 |
| 43 | C22 | 1−34T−78351T2−34p3T3+p6T4 |
| 47 | C22 | 1−54T−100907T2−54p3T3+p6T4 |
| 53 | C2 | (1+693T+p3T2)2 |
| 59 | C22 | 1+180T−172979T2+180p3T3+p6T4 |
| 61 | C22 | 1−280T−148581T2−280p3T3+p6T4 |
| 67 | C22 | 1−586T+42633T2−586p3T3+p6T4 |
| 71 | C2 | (1−504T+p3T2)2 |
| 73 | C2 | (1−161T+p3T2)2 |
| 79 | C22 | 1+440T−299439T2+440p3T3+p6T4 |
| 83 | C22 | 1+999T+426214T2+999p3T3+p6T4 |
| 89 | C2 | (1−882T+p3T2)2 |
| 97 | C22 | 1−721T−392832T2−721p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35101465547225160168113612762, −11.14535436853415931281237418873, −10.35843789578670937672571032185, −10.10994286260179528909852532421, −9.536542371664218804918650587077, −9.317981175865497587191162646416, −8.200476841792196676564309207664, −7.982510118586333691003602260837, −7.63574343568576525627688197148, −7.59525428254638429934892376938, −6.37967877519881137023231582662, −6.07905970095647360429010729322, −5.35994749583048097088568535573, −5.00833592551767471313979028454, −4.31940513893412940706157992357, −3.60537207784656534884930927804, −2.87388971897964494457200464816, −2.68655719901948491506880040306, −1.06383263312562327872496585481, −0.77402054066306260397507537847,
0.77402054066306260397507537847, 1.06383263312562327872496585481, 2.68655719901948491506880040306, 2.87388971897964494457200464816, 3.60537207784656534884930927804, 4.31940513893412940706157992357, 5.00833592551767471313979028454, 5.35994749583048097088568535573, 6.07905970095647360429010729322, 6.37967877519881137023231582662, 7.59525428254638429934892376938, 7.63574343568576525627688197148, 7.982510118586333691003602260837, 8.200476841792196676564309207664, 9.317981175865497587191162646416, 9.536542371664218804918650587077, 10.10994286260179528909852532421, 10.35843789578670937672571032185, 11.14535436853415931281237418873, 11.35101465547225160168113612762