L(s) = 1 | + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)11-s − i·19-s + (0.366 + 1.36i)23-s + (−0.499 − 0.866i)25-s + (0.866 − 0.5i)29-s + (−0.5 + 0.866i)31-s + (1 + i)37-s + (−0.5 + 0.866i)41-s + (−1.36 − 0.366i)43-s + (−0.366 + 1.36i)47-s + (0.866 + 0.5i)49-s − 0.999·55-s + (−0.866 − 0.5i)59-s + (−1.36 + 0.366i)67-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)11-s − i·19-s + (0.366 + 1.36i)23-s + (−0.499 − 0.866i)25-s + (0.866 − 0.5i)29-s + (−0.5 + 0.866i)31-s + (1 + i)37-s + (−0.5 + 0.866i)41-s + (−1.36 − 0.366i)43-s + (−0.366 + 1.36i)47-s + (0.866 + 0.5i)49-s − 0.999·55-s + (−0.866 − 0.5i)59-s + (−1.36 + 0.366i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0572 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0572 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.053736669\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.053736669\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + iT - T^{2} \) |
| 23 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 - iT - T^{2} \) |
| 97 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.154473359471798235938521563944, −8.081130574678612484007986221795, −7.51428295178064479261775509314, −6.75305110262426477727581411544, −6.28876774820868120322483359642, −5.04086150914013921256310793949, −4.39966533212834919477159111666, −3.39336745468154481034985422019, −2.69975141606268938637675253478, −1.45498677274894673639016116156,
0.67546557150675981203024639222, 1.89575732645684157178202346055, 3.22670852639926538921585103035, 3.98189691052450903541596376363, 4.75008053349567689454058351269, 5.62890187839233156463048863031, 6.32112476942855722632999851409, 7.24936844627406609799534562023, 8.077962869407071539825627935258, 8.658373309967861210365298090010