L(s) = 1 | + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)11-s − i·19-s + (0.366 + 1.36i)23-s + (−0.499 − 0.866i)25-s + (0.866 − 0.5i)29-s + (−0.5 + 0.866i)31-s + (1 + i)37-s + (−0.5 + 0.866i)41-s + (−1.36 − 0.366i)43-s + (−0.366 + 1.36i)47-s + (0.866 + 0.5i)49-s − 0.999·55-s + (−0.866 − 0.5i)59-s + (−1.36 + 0.366i)67-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)5-s + (0.5 + 0.866i)11-s − i·19-s + (0.366 + 1.36i)23-s + (−0.499 − 0.866i)25-s + (0.866 − 0.5i)29-s + (−0.5 + 0.866i)31-s + (1 + i)37-s + (−0.5 + 0.866i)41-s + (−1.36 − 0.366i)43-s + (−0.366 + 1.36i)47-s + (0.866 + 0.5i)49-s − 0.999·55-s + (−0.866 − 0.5i)59-s + (−1.36 + 0.366i)67-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.0572−0.998i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.0572−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.0572−0.998i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(2377,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), 0.0572−0.998i)
|
Particular Values
L(21) |
≈ |
1.053736669 |
L(21) |
≈ |
1.053736669 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 7 | 1+(−0.866−0.5i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1+(−0.866+0.5i)T2 |
| 17 | 1+iT2 |
| 19 | 1+iT−T2 |
| 23 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 29 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−1−i)T+iT2 |
| 41 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 47 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 53 | 1−iT2 |
| 59 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 71 | 1+T+T2 |
| 73 | 1−iT2 |
| 79 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 83 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 89 | 1−iT−T2 |
| 97 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.154473359471798235938521563944, −8.081130574678612484007986221795, −7.51428295178064479261775509314, −6.75305110262426477727581411544, −6.28876774820868120322483359642, −5.04086150914013921256310793949, −4.39966533212834919477159111666, −3.39336745468154481034985422019, −2.69975141606268938637675253478, −1.45498677274894673639016116156,
0.67546557150675981203024639222, 1.89575732645684157178202346055, 3.22670852639926538921585103035, 3.98189691052450903541596376363, 4.75008053349567689454058351269, 5.62890187839233156463048863031, 6.32112476942855722632999851409, 7.24936844627406609799534562023, 8.077962869407071539825627935258, 8.658373309967861210365298090010