L(s) = 1 | − 2-s + 4-s + (−0.5 − 0.866i)5-s − 8-s + (0.5 + 0.866i)10-s + 16-s + 1.73i·17-s + 19-s + (−0.5 − 0.866i)20-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s + (−1.5 + 0.866i)31-s − 32-s − 1.73i·34-s − 38-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + (−0.5 − 0.866i)5-s − 8-s + (0.5 + 0.866i)10-s + 16-s + 1.73i·17-s + 19-s + (−0.5 − 0.866i)20-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s + (−1.5 + 0.866i)31-s − 32-s − 1.73i·34-s − 38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6952086431\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6952086431\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - 1.73iT - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.795877625995565746022054425171, −8.322253063691103526232715978680, −7.46180425083176276816000841178, −7.00888502137491555693564544509, −5.76722528973512968031969162656, −5.35751382373342910778605412372, −4.00060221469824650592778499589, −3.34875778136731301969430803148, −1.95272012553594927667455717285, −1.07774004749337072189208513184,
0.70540924740832342775693901353, 2.30070042155526006335616633926, 2.94601141062039916783181935240, 3.85773602517784727052389470813, 5.11847098845601104547859308480, 5.98611218435903779852507887347, 6.97886813211644625743582875593, 7.27912523533879543231904159018, 7.937226770852492521139951155570, 8.892129304618549294684432002935