L(s) = 1 | − 2-s + 4-s + (−0.5 − 0.866i)5-s − 8-s + (0.5 + 0.866i)10-s + 16-s + 1.73i·17-s + 19-s + (−0.5 − 0.866i)20-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s + (−1.5 + 0.866i)31-s − 32-s − 1.73i·34-s − 38-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + (−0.5 − 0.866i)5-s − 8-s + (0.5 + 0.866i)10-s + 16-s + 1.73i·17-s + 19-s + (−0.5 − 0.866i)20-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s + (−1.5 + 0.866i)31-s − 32-s − 1.73i·34-s − 38-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.939−0.342i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.939−0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.939−0.342i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(379,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), 0.939−0.342i)
|
Particular Values
L(21) |
≈ |
0.6952086431 |
L(21) |
≈ |
0.6952086431 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1+(−0.5+0.866i)T2 |
| 17 | 1−1.73iT−T2 |
| 19 | 1−T+T2 |
| 23 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 37 | 1+T2 |
| 41 | 1+(−0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 53 | 1−T+T2 |
| 59 | 1+(−0.5+0.866i)T2 |
| 61 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 83 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.795877625995565746022054425171, −8.322253063691103526232715978680, −7.46180425083176276816000841178, −7.00888502137491555693564544509, −5.76722528973512968031969162656, −5.35751382373342910778605412372, −4.00060221469824650592778499589, −3.34875778136731301969430803148, −1.95272012553594927667455717285, −1.07774004749337072189208513184,
0.70540924740832342775693901353, 2.30070042155526006335616633926, 2.94601141062039916783181935240, 3.85773602517784727052389470813, 5.11847098845601104547859308480, 5.98611218435903779852507887347, 6.97886813211644625743582875593, 7.27912523533879543231904159018, 7.937226770852492521139951155570, 8.892129304618549294684432002935