L(s) = 1 | − 2·5-s + 2·7-s − 4·17-s − 4·19-s − 10·23-s + 3·25-s + 6·29-s + 12·31-s − 4·35-s − 12·37-s − 10·41-s + 4·43-s − 14·47-s − 5·49-s − 4·53-s − 12·59-s − 6·61-s − 2·67-s + 8·73-s − 4·79-s − 6·83-s + 8·85-s − 14·89-s + 8·95-s + 4·97-s − 4·101-s + 20·103-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 0.755·7-s − 0.970·17-s − 0.917·19-s − 2.08·23-s + 3/5·25-s + 1.11·29-s + 2.15·31-s − 0.676·35-s − 1.97·37-s − 1.56·41-s + 0.609·43-s − 2.04·47-s − 5/7·49-s − 0.549·53-s − 1.56·59-s − 0.768·61-s − 0.244·67-s + 0.936·73-s − 0.450·79-s − 0.658·83-s + 0.867·85-s − 1.48·89-s + 0.820·95-s + 0.406·97-s − 0.398·101-s + 1.97·103-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10497600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
669.336 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 10497600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+T)2 |
good | 7 | D4 | 1−2T+9T2−2pT3+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | D4 | 1+4T+18T2+4pT3+p2T4 |
| 23 | D4 | 1+10T+65T2+10pT3+p2T4 |
| 29 | D4 | 1−6T+43T2−6pT3+p2T4 |
| 31 | D4 | 1−12T+74T2−12pT3+p2T4 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | D4 | 1+10T+83T2+10pT3+p2T4 |
| 43 | D4 | 1−4T−6T2−4pT3+p2T4 |
| 47 | D4 | 1+14T+137T2+14pT3+p2T4 |
| 53 | D4 | 1+4T+14T2+4pT3+p2T4 |
| 59 | D4 | 1+12T+130T2+12pT3+p2T4 |
| 61 | C2 | (1+3T+pT2)2 |
| 67 | D4 | 1+2T−15T2+2pT3+p2T4 |
| 71 | C22 | 1+46T2+p2T4 |
| 73 | D4 | 1−8T+66T2−8pT3+p2T4 |
| 79 | D4 | 1+4T+138T2+4pT3+p2T4 |
| 83 | D4 | 1+6T+169T2+6pT3+p2T4 |
| 89 | D4 | 1+14T+131T2+14pT3+p2T4 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.321954330565190670546770237618, −8.269388673049869867898993227212, −7.69799642451249789294204202953, −7.62620403829308572052042681192, −6.82501363862108435672879883240, −6.58729483272453982115367604885, −6.31437347731658171487128154550, −6.03260523213820954563537902392, −5.08397461220960252514209057093, −5.04924821575820287588360703708, −4.47352745114991563769336165146, −4.37672227492823335198910506060, −3.74112630462186499594093168576, −3.39645753062151709406053779632, −2.76685277250510753791582560652, −2.35525540850745789774399018372, −1.62008066329913966364782445589, −1.39616136812889307768968616451, 0, 0,
1.39616136812889307768968616451, 1.62008066329913966364782445589, 2.35525540850745789774399018372, 2.76685277250510753791582560652, 3.39645753062151709406053779632, 3.74112630462186499594093168576, 4.37672227492823335198910506060, 4.47352745114991563769336165146, 5.04924821575820287588360703708, 5.08397461220960252514209057093, 6.03260523213820954563537902392, 6.31437347731658171487128154550, 6.58729483272453982115367604885, 6.82501363862108435672879883240, 7.62620403829308572052042681192, 7.69799642451249789294204202953, 8.269388673049869867898993227212, 8.321954330565190670546770237618