L(s) = 1 | + 5-s − 3.27·7-s + 6.27·11-s − 1.27·13-s + 2·17-s + 19-s − 7.27·23-s + 25-s + 6.27·29-s + 6.27·31-s − 3.27·35-s − 10.5·37-s + 7.54·41-s + 4·43-s − 1.27·47-s + 3.72·49-s + 0.725·53-s + 6.27·55-s − 13·59-s + 8.54·61-s − 1.27·65-s + 0.549·67-s − 8.27·71-s + 15.0·73-s − 20.5·77-s + 10.5·79-s − 2.54·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.23·7-s + 1.89·11-s − 0.353·13-s + 0.485·17-s + 0.229·19-s − 1.51·23-s + 0.200·25-s + 1.16·29-s + 1.12·31-s − 0.553·35-s − 1.73·37-s + 1.17·41-s + 0.609·43-s − 0.185·47-s + 0.532·49-s + 0.0995·53-s + 0.846·55-s − 1.69·59-s + 1.09·61-s − 0.158·65-s + 0.0671·67-s − 0.982·71-s + 1.76·73-s − 2.34·77-s + 1.18·79-s − 0.279·83-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.908939684 |
L(21) |
≈ |
1.908939684 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
good | 7 | 1+3.27T+7T2 |
| 11 | 1−6.27T+11T2 |
| 13 | 1+1.27T+13T2 |
| 17 | 1−2T+17T2 |
| 19 | 1−T+19T2 |
| 23 | 1+7.27T+23T2 |
| 29 | 1−6.27T+29T2 |
| 31 | 1−6.27T+31T2 |
| 37 | 1+10.5T+37T2 |
| 41 | 1−7.54T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+1.27T+47T2 |
| 53 | 1−0.725T+53T2 |
| 59 | 1+13T+59T2 |
| 61 | 1−8.54T+61T2 |
| 67 | 1−0.549T+67T2 |
| 71 | 1+8.27T+71T2 |
| 73 | 1−15.0T+73T2 |
| 79 | 1−10.5T+79T2 |
| 83 | 1+2.54T+83T2 |
| 89 | 1−12.8T+89T2 |
| 97 | 1−16T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.857449078695155521324121511884, −7.917225906548906442004130191206, −6.93137968145181140621046171731, −6.35870535421854895138558621178, −5.93421836585419308708142466618, −4.73688837916018369756851686823, −3.84430790532800964179544769989, −3.16432154335307708493304060967, −2.03295347094569248608226426374, −0.844460583937210432502758867826,
0.844460583937210432502758867826, 2.03295347094569248608226426374, 3.16432154335307708493304060967, 3.84430790532800964179544769989, 4.73688837916018369756851686823, 5.93421836585419308708142466618, 6.35870535421854895138558621178, 6.93137968145181140621046171731, 7.917225906548906442004130191206, 8.857449078695155521324121511884