Properties

Label 2-3240-1.1-c1-0-45
Degree $2$
Conductor $3240$
Sign $-1$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 0.267·7-s + 1.46·11-s − 5.46·13-s − 0.535·17-s − 2·19-s − 3.73·23-s + 25-s − 1.53·29-s − 2·31-s + 0.267·35-s + 10.3·37-s − 9.92·41-s − 4.53·43-s − 0.267·47-s − 6.92·49-s − 6·53-s + 1.46·55-s − 14.3·59-s − 8.46·61-s − 5.46·65-s + 6.26·67-s − 9.46·71-s + 6.92·73-s + 0.392·77-s + 15.4·79-s + 13.1·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.101·7-s + 0.441·11-s − 1.51·13-s − 0.129·17-s − 0.458·19-s − 0.778·23-s + 0.200·25-s − 0.285·29-s − 0.359·31-s + 0.0452·35-s + 1.70·37-s − 1.55·41-s − 0.691·43-s − 0.0390·47-s − 0.989·49-s − 0.824·53-s + 0.197·55-s − 1.87·59-s − 1.08·61-s − 0.677·65-s + 0.765·67-s − 1.12·71-s + 0.810·73-s + 0.0447·77-s + 1.73·79-s + 1.44·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 0.267T + 7T^{2} \)
11 \( 1 - 1.46T + 11T^{2} \)
13 \( 1 + 5.46T + 13T^{2} \)
17 \( 1 + 0.535T + 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 + 3.73T + 23T^{2} \)
29 \( 1 + 1.53T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 + 9.92T + 41T^{2} \)
43 \( 1 + 4.53T + 43T^{2} \)
47 \( 1 + 0.267T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 14.3T + 59T^{2} \)
61 \( 1 + 8.46T + 61T^{2} \)
67 \( 1 - 6.26T + 67T^{2} \)
71 \( 1 + 9.46T + 71T^{2} \)
73 \( 1 - 6.92T + 73T^{2} \)
79 \( 1 - 15.4T + 79T^{2} \)
83 \( 1 - 13.1T + 83T^{2} \)
89 \( 1 - 9.92T + 89T^{2} \)
97 \( 1 + 8.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.145693696437440781237211565717, −7.64312649560779704318168366924, −6.66183823242826621240456410309, −6.15204437947550932623140120046, −5.09107219963562564572480395396, −4.56204830371029114281456510320, −3.47907348552524546368203961946, −2.45119853347985243936707860729, −1.62957260170116153096483168890, 0, 1.62957260170116153096483168890, 2.45119853347985243936707860729, 3.47907348552524546368203961946, 4.56204830371029114281456510320, 5.09107219963562564572480395396, 6.15204437947550932623140120046, 6.66183823242826621240456410309, 7.64312649560779704318168366924, 8.145693696437440781237211565717

Graph of the $Z$-function along the critical line