L(s) = 1 | − 3·3-s + 2·4-s + 2·7-s + 2·8-s + 10·9-s − 3·11-s − 6·12-s + 10·13-s + 4·16-s − 4·17-s + 4·19-s − 6·21-s − 15·23-s − 6·24-s − 13·27-s + 4·28-s + 29-s − 32-s + 9·33-s + 20·36-s − 17·37-s − 30·39-s − 6·41-s − 12·43-s − 6·44-s − 24·47-s − 12·48-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 4-s + 0.755·7-s + 0.707·8-s + 10/3·9-s − 0.904·11-s − 1.73·12-s + 2.77·13-s + 16-s − 0.970·17-s + 0.917·19-s − 1.30·21-s − 3.12·23-s − 1.22·24-s − 2.50·27-s + 0.755·28-s + 0.185·29-s − 0.176·32-s + 1.56·33-s + 10/3·36-s − 2.79·37-s − 4.80·39-s − 0.937·41-s − 1.82·43-s − 0.904·44-s − 3.50·47-s − 1.73·48-s + ⋯ |
Λ(s)=(=((520⋅1310)s/2ΓC(s)10L(s)Λ(2−s)
Λ(s)=(=((520⋅1310)s/2ΓC(s+1/2)10L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.503469817 |
L(21) |
≈ |
2.503469817 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−10T+60T2−263T3+1076T4−3957T5+1076pT6−263p2T7+60p3T8−10p4T9+p5T10 |
good | 2 | 1−pT2−pT3+9T5+9T6−5p2T7−23T8+5p2T9+45T10+5p3T11−23p2T12−5p5T13+9p4T14+9p5T15−p8T17−p9T18+p10T20 |
| 3 | 1+pT−T2−20T3−26T4+41T5+130T6+19T7−274T8−43pT9+409T10−43p2T11−274p2T12+19p3T13+130p4T14+41p5T15−26p6T16−20p7T17−p8T18+p10T19+p10T20 |
| 7 | 1−2T−12T2−8T3+97T4+281T5−260T6−1954T7−835T8+2855T9+19063T10+2855pT11−835p2T12−1954p3T13−260p4T14+281p5T15+97p6T16−8p7T17−12p8T18−2p9T19+p10T20 |
| 11 | 1+3T−29T2−38T3+576T4−3T5−7311T6+6832T7+74554T8−49384T9−752787T10−49384pT11+74554p2T12+6832p3T13−7311p4T14−3p5T15+576p6T16−38p7T17−29p8T18+3p9T19+p10T20 |
| 17 | 1+4T−33T2−158T3+411T4+2612T5−4681T6−45867T7+1590T8+464191T9+1440069T10+464191pT11+1590p2T12−45867p3T13−4681p4T14+2612p5T15+411p6T16−158p7T17−33p8T18+4p9T19+p10T20 |
| 19 | 1−4T−71T2+194T3+3329T4−5754T5−5837pT6+98987T7+2917208T8−788473T9−61357653T10−788473pT11+2917208p2T12+98987p3T13−5837p5T14−5754p5T15+3329p6T16+194p7T17−71p8T18−4p9T19+p10T20 |
| 23 | 1+15T+82T2+51T3−1455T4−4488T5+18491T6+99225T7−338668T8−4764405T9−26762865T10−4764405pT11−338668p2T12+99225p3T13+18491p4T14−4488p5T15−1455p6T16+51p7T17+82p8T18+15p9T19+p10T20 |
| 29 | 1−T−79T2−146T3+3192T4+11779T5−67556T6−384403T7+890654T8+4091745T9−7513779T10+4091745pT11+890654p2T12−384403p3T13−67556p4T14+11779p5T15+3192p6T16−146p7T17−79p8T18−p9T19+p10T20 |
| 31 | (1+98T2−29T3+4804T4−1573T5+4804pT6−29p2T7+98p3T8+p5T10)2 |
| 37 | 1+17T+51T2−502T3−372T4+37861T5+106407T6−1104416T7−5601148T8+10960902T9+176313507T10+10960902pT11−5601148p2T12−1104416p3T13+106407p4T14+37861p5T15−372p6T16−502p7T17+51p8T18+17p9T19+p10T20 |
| 41 | 1+6T−95T2−384T3+6327T4+16770T5−184789T6−272397T7+682286T8+2994381T9+158651253T10+2994381pT11+682286p2T12−272397p3T13−184789p4T14+16770p5T15+6327p6T16−384p7T17−95p8T18+6p9T19+p10T20 |
| 43 | 1+12T−17T2−1046T3−4829T4+18006T5+201631T6+9867pT7−166530T8−8309917T9−106017329T10−8309917pT11−166530p2T12+9867p4T13+201631p4T14+18006p5T15−4829p6T16−1046p7T17−17p8T18+12p9T19+p10T20 |
| 47 | (1+12T+215T2+1945T3+19360T4+131839T5+19360pT6+1945p2T7+215p3T8+12p4T9+p5T10)2 |
| 53 | (1−8T+148T2−1417T3+13132T4−99183T5+13132pT6−1417p2T7+148p3T8−8p4T9+p5T10)2 |
| 59 | 1−12T−64T2+738T3+96pT4−9081T5−336339T6−2403693T7+23185887T8+87777036T9−1346009523T10+87777036pT11+23185887p2T12−2403693p3T13−336339p4T14−9081p5T15+96p7T16+738p7T17−64p8T18−12p9T19+p10T20 |
| 61 | 1+5T−233T2−770T3+32534T4+66025T5−3312205T6−3580430T7+267548612T8+86879620T9−17862005833T10+86879620pT11+267548612p2T12−3580430p3T13−3312205p4T14+66025p5T15+32534p6T16−770p7T17−233p8T18+5p9T19+p10T20 |
| 67 | 1−16T+52T2+292T3−5179T4+79117T5−447406T6−998192T7+21597155T8−259219709T9+2885084279T10−259219709pT11+21597155p2T12−998192p3T13−447406p4T14+79117p5T15−5179p6T16+292p7T17+52p8T18−16p9T19+p10T20 |
| 71 | 1+19T+13T2−1414T3−468T4+881pT5−611944T6−7048209T7+20077850T8+215658713T9−492609879T10+215658713pT11+20077850p2T12−7048209p3T13−611944p4T14+881p6T15−468p6T16−1414p7T17+13p8T18+19p9T19+p10T20 |
| 73 | (1+8T+246T2+1346T3+28129T4+121377T5+28129pT6+1346p2T7+246p3T8+8p4T9+p5T10)2 |
| 79 | (1+14T+300T2+3074T3+42145T4+327819T5+42145pT6+3074p2T7+300p3T8+14p4T9+p5T10)2 |
| 83 | (1+7T+158T2+1863T3+24007T4+159037T5+24007pT6+1863p2T7+158p3T8+7p4T9+p5T10)2 |
| 89 | 1−10T−306T2+2112T3+65305T4−271977T5−10058402T6+21214470T7+1225818667T8−762210039T9−120541083185T10−762210039pT11+1225818667p2T12+21214470p3T13−10058402p4T14−271977p5T15+65305p6T16+2112p7T17−306p8T18−10p9T19+p10T20 |
| 97 | 1+37T+516T2+4163T3+40703T4+282376T5−2037243T6−34573291T7−28158538T8−544608903T9−24070563673T10−544608903pT11−28158538p2T12−34573291p3T13−2037243p4T14+282376p5T15+40703p6T16+4163p7T17+516p8T18+37p9T19+p10T20 |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.38253418394432217872515640317, −4.35070330811764194893977131323, −4.28453488737234209050662763348, −4.08601168261360109043459507197, −4.03809302786921102858973721705, −3.87922728683128571548391341225, −3.79963793488928692050183580793, −3.69305772236395202280858204778, −3.38437080392205097488660864211, −3.30855400539417621871621452516, −3.21827616564514736408726341938, −2.92536223700126030693975628002, −2.88896443726096609350629779134, −2.85734023305156338157693619844, −2.60844358081501628651745976562, −2.06890462838833844850198754787, −2.04691440609770714909605607105, −1.95445381155498410011126100140, −1.73230534991772285646266140660, −1.69373797949955124014676577145, −1.46033955569582225577643723300, −1.39726418800397312464984022544, −1.22249992441489060596500792987, −0.68477636603985020595255067532, −0.36304622185617679769022233344,
0.36304622185617679769022233344, 0.68477636603985020595255067532, 1.22249992441489060596500792987, 1.39726418800397312464984022544, 1.46033955569582225577643723300, 1.69373797949955124014676577145, 1.73230534991772285646266140660, 1.95445381155498410011126100140, 2.04691440609770714909605607105, 2.06890462838833844850198754787, 2.60844358081501628651745976562, 2.85734023305156338157693619844, 2.88896443726096609350629779134, 2.92536223700126030693975628002, 3.21827616564514736408726341938, 3.30855400539417621871621452516, 3.38437080392205097488660864211, 3.69305772236395202280858204778, 3.79963793488928692050183580793, 3.87922728683128571548391341225, 4.03809302786921102858973721705, 4.08601168261360109043459507197, 4.28453488737234209050662763348, 4.35070330811764194893977131323, 4.38253418394432217872515640317
Plot not available for L-functions of degree greater than 10.