L(s) = 1 | + (0.427 + 0.246i)2-s + (0.243 + 0.908i)3-s + (−0.878 − 1.52i)4-s + (−0.120 + 0.448i)6-s + (−1.83 − 3.18i)7-s − 1.85i·8-s + (1.83 − 1.05i)9-s + (−0.177 − 0.664i)11-s + (1.16 − 1.16i)12-s + (2.92 − 2.11i)13-s − 1.81i·14-s + (−1.29 + 2.24i)16-s + (−2.29 − 0.614i)17-s + 1.04·18-s + (5.29 + 1.41i)19-s + ⋯ |
L(s) = 1 | + (0.302 + 0.174i)2-s + (0.140 + 0.524i)3-s + (−0.439 − 0.760i)4-s + (−0.0490 + 0.183i)6-s + (−0.694 − 1.20i)7-s − 0.655i·8-s + (0.610 − 0.352i)9-s + (−0.0536 − 0.200i)11-s + (0.337 − 0.337i)12-s + (0.810 − 0.585i)13-s − 0.485i·14-s + (−0.324 + 0.562i)16-s + (−0.556 − 0.149i)17-s + 0.246·18-s + (1.21 + 0.325i)19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.581+0.813i)Λ(2−s)
Λ(s)=(=(325s/2ΓC(s+1/2)L(s)(0.581+0.813i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.581+0.813i
|
Analytic conductor: |
2.59513 |
Root analytic conductor: |
1.61094 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :1/2), 0.581+0.813i)
|
Particular Values
L(1) |
≈ |
1.20794−0.620960i |
L(21) |
≈ |
1.20794−0.620960i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+(−2.92+2.11i)T |
good | 2 | 1+(−0.427−0.246i)T+(1+1.73i)T2 |
| 3 | 1+(−0.243−0.908i)T+(−2.59+1.5i)T2 |
| 7 | 1+(1.83+3.18i)T+(−3.5+6.06i)T2 |
| 11 | 1+(0.177+0.664i)T+(−9.52+5.5i)T2 |
| 17 | 1+(2.29+0.614i)T+(14.7+8.5i)T2 |
| 19 | 1+(−5.29−1.41i)T+(16.4+9.5i)T2 |
| 23 | 1+(1.30−0.350i)T+(19.9−11.5i)T2 |
| 29 | 1+(8.24+4.75i)T+(14.5+25.1i)T2 |
| 31 | 1+(−4.81−4.81i)T+31iT2 |
| 37 | 1+(−0.917+1.58i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.534−0.143i)T+(35.5−20.5i)T2 |
| 43 | 1+(−0.560+2.09i)T+(−37.2−21.5i)T2 |
| 47 | 1−3.80T+47T2 |
| 53 | 1+(−2.47+2.47i)T−53iT2 |
| 59 | 1+(2.69−10.0i)T+(−51.0−29.5i)T2 |
| 61 | 1+(3.09+5.36i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−10.6−6.12i)T+(33.5+58.0i)T2 |
| 71 | 1+(1.73−6.47i)T+(−61.4−35.5i)T2 |
| 73 | 1−3.37iT−73T2 |
| 79 | 1−3.12iT−79T2 |
| 83 | 1+2.13T+83T2 |
| 89 | 1+(−3.26+0.874i)T+(77.0−44.5i)T2 |
| 97 | 1+(6.12−3.53i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21543121016208178353298920190, −10.26312245168278901460571579126, −9.848965089236430535609223631181, −8.913134170170375703964970524100, −7.46741022991755287527303788953, −6.51166930067263998762649831241, −5.46738826280203900016216197689, −4.19116924730912733967428953677, −3.53778010702335621843416175318, −0.954342106547333236551374524965,
2.12185049125853873392080784039, 3.33279679663753754717103605545, 4.59510289801482437736101907364, 5.84255005779189802038537117508, 7.00249680182345525595353330237, 7.979941841605551712037314085082, 8.957069536107144198464628482929, 9.610579217596306882709214693745, 11.14385957345830377419776971200, 11.98679301891509976518963093496