L(s) = 1 | + (0.427 + 0.246i)2-s + (0.243 + 0.908i)3-s + (−0.878 − 1.52i)4-s + (−0.120 + 0.448i)6-s + (−1.83 − 3.18i)7-s − 1.85i·8-s + (1.83 − 1.05i)9-s + (−0.177 − 0.664i)11-s + (1.16 − 1.16i)12-s + (2.92 − 2.11i)13-s − 1.81i·14-s + (−1.29 + 2.24i)16-s + (−2.29 − 0.614i)17-s + 1.04·18-s + (5.29 + 1.41i)19-s + ⋯ |
L(s) = 1 | + (0.302 + 0.174i)2-s + (0.140 + 0.524i)3-s + (−0.439 − 0.760i)4-s + (−0.0490 + 0.183i)6-s + (−0.694 − 1.20i)7-s − 0.655i·8-s + (0.610 − 0.352i)9-s + (−0.0536 − 0.200i)11-s + (0.337 − 0.337i)12-s + (0.810 − 0.585i)13-s − 0.485i·14-s + (−0.324 + 0.562i)16-s + (−0.556 − 0.149i)17-s + 0.246·18-s + (1.21 + 0.325i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.581 + 0.813i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.581 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20794 - 0.620960i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20794 - 0.620960i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-2.92 + 2.11i)T \) |
good | 2 | \( 1 + (-0.427 - 0.246i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.243 - 0.908i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (1.83 + 3.18i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.177 + 0.664i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (2.29 + 0.614i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-5.29 - 1.41i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (1.30 - 0.350i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (8.24 + 4.75i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.81 - 4.81i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.917 + 1.58i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.534 - 0.143i)T + (35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-0.560 + 2.09i)T + (-37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 3.80T + 47T^{2} \) |
| 53 | \( 1 + (-2.47 + 2.47i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.69 - 10.0i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (3.09 + 5.36i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.6 - 6.12i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.73 - 6.47i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 3.37iT - 73T^{2} \) |
| 79 | \( 1 - 3.12iT - 79T^{2} \) |
| 83 | \( 1 + 2.13T + 83T^{2} \) |
| 89 | \( 1 + (-3.26 + 0.874i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (6.12 - 3.53i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21543121016208178353298920190, −10.26312245168278901460571579126, −9.848965089236430535609223631181, −8.913134170170375703964970524100, −7.46741022991755287527303788953, −6.51166930067263998762649831241, −5.46738826280203900016216197689, −4.19116924730912733967428953677, −3.53778010702335621843416175318, −0.954342106547333236551374524965,
2.12185049125853873392080784039, 3.33279679663753754717103605545, 4.59510289801482437736101907364, 5.84255005779189802038537117508, 7.00249680182345525595353330237, 7.979941841605551712037314085082, 8.957069536107144198464628482929, 9.610579217596306882709214693745, 11.14385957345830377419776971200, 11.98679301891509976518963093496