Properties

Label 2-325-1.1-c5-0-46
Degree $2$
Conductor $325$
Sign $-1$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.20·2-s − 29.5·3-s − 21.7·4-s − 94.8·6-s − 11.5·7-s − 172.·8-s + 632.·9-s − 596.·11-s + 642.·12-s + 169·13-s − 37.1·14-s + 142.·16-s + 2.09e3·17-s + 2.02e3·18-s + 35.4·19-s + 342.·21-s − 1.91e3·22-s + 2.78e3·23-s + 5.09e3·24-s + 541.·26-s − 1.15e4·27-s + 251.·28-s − 370.·29-s + 5.05e3·31-s + 5.96e3·32-s + 1.76e4·33-s + 6.71e3·34-s + ⋯
L(s)  = 1  + 0.566·2-s − 1.89·3-s − 0.678·4-s − 1.07·6-s − 0.0892·7-s − 0.951·8-s + 2.60·9-s − 1.48·11-s + 1.28·12-s + 0.277·13-s − 0.0506·14-s + 0.139·16-s + 1.75·17-s + 1.47·18-s + 0.0225·19-s + 0.169·21-s − 0.842·22-s + 1.09·23-s + 1.80·24-s + 0.157·26-s − 3.04·27-s + 0.0605·28-s − 0.0817·29-s + 0.944·31-s + 1.03·32-s + 2.82·33-s + 0.995·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169T \)
good2 \( 1 - 3.20T + 32T^{2} \)
3 \( 1 + 29.5T + 243T^{2} \)
7 \( 1 + 11.5T + 1.68e4T^{2} \)
11 \( 1 + 596.T + 1.61e5T^{2} \)
17 \( 1 - 2.09e3T + 1.41e6T^{2} \)
19 \( 1 - 35.4T + 2.47e6T^{2} \)
23 \( 1 - 2.78e3T + 6.43e6T^{2} \)
29 \( 1 + 370.T + 2.05e7T^{2} \)
31 \( 1 - 5.05e3T + 2.86e7T^{2} \)
37 \( 1 - 4.12e3T + 6.93e7T^{2} \)
41 \( 1 + 1.81e4T + 1.15e8T^{2} \)
43 \( 1 + 7.90e3T + 1.47e8T^{2} \)
47 \( 1 + 1.31e4T + 2.29e8T^{2} \)
53 \( 1 - 3.82e4T + 4.18e8T^{2} \)
59 \( 1 - 1.78e4T + 7.14e8T^{2} \)
61 \( 1 - 7.39e3T + 8.44e8T^{2} \)
67 \( 1 + 2.33e4T + 1.35e9T^{2} \)
71 \( 1 + 3.31e4T + 1.80e9T^{2} \)
73 \( 1 + 1.08e4T + 2.07e9T^{2} \)
79 \( 1 + 1.77e4T + 3.07e9T^{2} \)
83 \( 1 + 8.42e4T + 3.93e9T^{2} \)
89 \( 1 + 4.64e4T + 5.58e9T^{2} \)
97 \( 1 - 1.54e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27662660418272348176641672690, −9.927017616147294011749118418224, −8.285430758176530522835944676595, −7.11302357847818106064733775524, −5.93049367935974027215997573311, −5.30231559823003218437995258480, −4.68655594195722039291424104924, −3.27903928286136950592885603599, −1.03803694548153880708349090320, 0, 1.03803694548153880708349090320, 3.27903928286136950592885603599, 4.68655594195722039291424104924, 5.30231559823003218437995258480, 5.93049367935974027215997573311, 7.11302357847818106064733775524, 8.285430758176530522835944676595, 9.927017616147294011749118418224, 10.27662660418272348176641672690

Graph of the $Z$-function along the critical line