L(s) = 1 | + 3.78·2-s − 8.20·3-s − 17.6·4-s − 31.0·6-s − 88.9·7-s − 188.·8-s − 175.·9-s − 156.·11-s + 145.·12-s − 169·13-s − 336.·14-s − 145.·16-s − 447.·17-s − 664.·18-s − 269.·19-s + 730.·21-s − 592.·22-s − 1.37e3·23-s + 1.54e3·24-s − 639.·26-s + 3.43e3·27-s + 1.57e3·28-s − 3.69e3·29-s + 797.·31-s + 5.46e3·32-s + 1.28e3·33-s − 1.69e3·34-s + ⋯ |
L(s) = 1 | + 0.668·2-s − 0.526·3-s − 0.552·4-s − 0.352·6-s − 0.686·7-s − 1.03·8-s − 0.722·9-s − 0.390·11-s + 0.290·12-s − 0.277·13-s − 0.459·14-s − 0.142·16-s − 0.375·17-s − 0.483·18-s − 0.171·19-s + 0.361·21-s − 0.261·22-s − 0.540·23-s + 0.546·24-s − 0.185·26-s + 0.907·27-s + 0.379·28-s − 0.816·29-s + 0.149·31-s + 0.943·32-s + 0.205·33-s − 0.251·34-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.7580191801 |
L(21) |
≈ |
0.7580191801 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169T |
good | 2 | 1−3.78T+32T2 |
| 3 | 1+8.20T+243T2 |
| 7 | 1+88.9T+1.68e4T2 |
| 11 | 1+156.T+1.61e5T2 |
| 17 | 1+447.T+1.41e6T2 |
| 19 | 1+269.T+2.47e6T2 |
| 23 | 1+1.37e3T+6.43e6T2 |
| 29 | 1+3.69e3T+2.05e7T2 |
| 31 | 1−797.T+2.86e7T2 |
| 37 | 1−4.39e3T+6.93e7T2 |
| 41 | 1−1.43e4T+1.15e8T2 |
| 43 | 1+1.13e4T+1.47e8T2 |
| 47 | 1−9.97e3T+2.29e8T2 |
| 53 | 1+1.15e4T+4.18e8T2 |
| 59 | 1−7.13e3T+7.14e8T2 |
| 61 | 1−1.66e4T+8.44e8T2 |
| 67 | 1+4.21e3T+1.35e9T2 |
| 71 | 1−1.28e4T+1.80e9T2 |
| 73 | 1−1.30e4T+2.07e9T2 |
| 79 | 1−7.47e4T+3.07e9T2 |
| 83 | 1+8.54e3T+3.93e9T2 |
| 89 | 1−5.95e4T+5.58e9T2 |
| 97 | 1−1.73e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.93154635370962693217914533373, −9.819359874113385446827075130203, −9.006768629930498181630075410956, −7.947641408221659107676034296682, −6.50518251108565296809626075942, −5.75187768145654263500815590950, −4.85812672178506052188292407225, −3.70912869418540935032313904278, −2.58187854116373633571287599977, −0.42496638566140978183476951573,
0.42496638566140978183476951573, 2.58187854116373633571287599977, 3.70912869418540935032313904278, 4.85812672178506052188292407225, 5.75187768145654263500815590950, 6.50518251108565296809626075942, 7.947641408221659107676034296682, 9.006768629930498181630075410956, 9.819359874113385446827075130203, 10.93154635370962693217914533373