Properties

Label 2-325-1.1-c5-0-10
Degree $2$
Conductor $325$
Sign $1$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.78·2-s − 8.20·3-s − 17.6·4-s − 31.0·6-s − 88.9·7-s − 188.·8-s − 175.·9-s − 156.·11-s + 145.·12-s − 169·13-s − 336.·14-s − 145.·16-s − 447.·17-s − 664.·18-s − 269.·19-s + 730.·21-s − 592.·22-s − 1.37e3·23-s + 1.54e3·24-s − 639.·26-s + 3.43e3·27-s + 1.57e3·28-s − 3.69e3·29-s + 797.·31-s + 5.46e3·32-s + 1.28e3·33-s − 1.69e3·34-s + ⋯
L(s)  = 1  + 0.668·2-s − 0.526·3-s − 0.552·4-s − 0.352·6-s − 0.686·7-s − 1.03·8-s − 0.722·9-s − 0.390·11-s + 0.290·12-s − 0.277·13-s − 0.459·14-s − 0.142·16-s − 0.375·17-s − 0.483·18-s − 0.171·19-s + 0.361·21-s − 0.261·22-s − 0.540·23-s + 0.546·24-s − 0.185·26-s + 0.907·27-s + 0.379·28-s − 0.816·29-s + 0.149·31-s + 0.943·32-s + 0.205·33-s − 0.251·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.7580191801\)
\(L(\frac12)\) \(\approx\) \(0.7580191801\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + 169T \)
good2 \( 1 - 3.78T + 32T^{2} \)
3 \( 1 + 8.20T + 243T^{2} \)
7 \( 1 + 88.9T + 1.68e4T^{2} \)
11 \( 1 + 156.T + 1.61e5T^{2} \)
17 \( 1 + 447.T + 1.41e6T^{2} \)
19 \( 1 + 269.T + 2.47e6T^{2} \)
23 \( 1 + 1.37e3T + 6.43e6T^{2} \)
29 \( 1 + 3.69e3T + 2.05e7T^{2} \)
31 \( 1 - 797.T + 2.86e7T^{2} \)
37 \( 1 - 4.39e3T + 6.93e7T^{2} \)
41 \( 1 - 1.43e4T + 1.15e8T^{2} \)
43 \( 1 + 1.13e4T + 1.47e8T^{2} \)
47 \( 1 - 9.97e3T + 2.29e8T^{2} \)
53 \( 1 + 1.15e4T + 4.18e8T^{2} \)
59 \( 1 - 7.13e3T + 7.14e8T^{2} \)
61 \( 1 - 1.66e4T + 8.44e8T^{2} \)
67 \( 1 + 4.21e3T + 1.35e9T^{2} \)
71 \( 1 - 1.28e4T + 1.80e9T^{2} \)
73 \( 1 - 1.30e4T + 2.07e9T^{2} \)
79 \( 1 - 7.47e4T + 3.07e9T^{2} \)
83 \( 1 + 8.54e3T + 3.93e9T^{2} \)
89 \( 1 - 5.95e4T + 5.58e9T^{2} \)
97 \( 1 - 1.73e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93154635370962693217914533373, −9.819359874113385446827075130203, −9.006768629930498181630075410956, −7.947641408221659107676034296682, −6.50518251108565296809626075942, −5.75187768145654263500815590950, −4.85812672178506052188292407225, −3.70912869418540935032313904278, −2.58187854116373633571287599977, −0.42496638566140978183476951573, 0.42496638566140978183476951573, 2.58187854116373633571287599977, 3.70912869418540935032313904278, 4.85812672178506052188292407225, 5.75187768145654263500815590950, 6.50518251108565296809626075942, 7.947641408221659107676034296682, 9.006768629930498181630075410956, 9.819359874113385446827075130203, 10.93154635370962693217914533373

Graph of the $Z$-function along the critical line