Properties

Label 2-325-1.1-c5-0-79
Degree $2$
Conductor $325$
Sign $-1$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.99·2-s − 27.4·3-s + 67.8·4-s − 274.·6-s − 29.7·7-s + 358.·8-s + 511.·9-s − 179.·11-s − 1.86e3·12-s + 169·13-s − 297.·14-s + 1.40e3·16-s + 1.31e3·17-s + 5.10e3·18-s − 1.55e3·19-s + 818.·21-s − 1.79e3·22-s − 4.87e3·23-s − 9.83e3·24-s + 1.68e3·26-s − 7.35e3·27-s − 2.02e3·28-s + 7.31e3·29-s − 1.61e3·31-s + 2.60e3·32-s + 4.94e3·33-s + 1.31e4·34-s + ⋯
L(s)  = 1  + 1.76·2-s − 1.76·3-s + 2.11·4-s − 3.11·6-s − 0.229·7-s + 1.97·8-s + 2.10·9-s − 0.448·11-s − 3.73·12-s + 0.277·13-s − 0.406·14-s + 1.37·16-s + 1.10·17-s + 3.71·18-s − 0.987·19-s + 0.404·21-s − 0.792·22-s − 1.92·23-s − 3.48·24-s + 0.489·26-s − 1.94·27-s − 0.487·28-s + 1.61·29-s − 0.301·31-s + 0.448·32-s + 0.790·33-s + 1.95·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169T \)
good2 \( 1 - 9.99T + 32T^{2} \)
3 \( 1 + 27.4T + 243T^{2} \)
7 \( 1 + 29.7T + 1.68e4T^{2} \)
11 \( 1 + 179.T + 1.61e5T^{2} \)
17 \( 1 - 1.31e3T + 1.41e6T^{2} \)
19 \( 1 + 1.55e3T + 2.47e6T^{2} \)
23 \( 1 + 4.87e3T + 6.43e6T^{2} \)
29 \( 1 - 7.31e3T + 2.05e7T^{2} \)
31 \( 1 + 1.61e3T + 2.86e7T^{2} \)
37 \( 1 + 1.21e4T + 6.93e7T^{2} \)
41 \( 1 - 1.82e3T + 1.15e8T^{2} \)
43 \( 1 + 1.62e4T + 1.47e8T^{2} \)
47 \( 1 + 8.54e3T + 2.29e8T^{2} \)
53 \( 1 + 3.39e4T + 4.18e8T^{2} \)
59 \( 1 + 2.02e4T + 7.14e8T^{2} \)
61 \( 1 + 2.98e3T + 8.44e8T^{2} \)
67 \( 1 + 2.35e4T + 1.35e9T^{2} \)
71 \( 1 - 5.17e4T + 1.80e9T^{2} \)
73 \( 1 - 5.53e3T + 2.07e9T^{2} \)
79 \( 1 + 3.21e4T + 3.07e9T^{2} \)
83 \( 1 - 1.60e4T + 3.93e9T^{2} \)
89 \( 1 - 1.08e5T + 5.58e9T^{2} \)
97 \( 1 - 1.10e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.65631294363772409106747934471, −10.08776028973501134731107608627, −7.924410314379776063164047280117, −6.58963953086218031858774070993, −6.18321977004902932338517666304, −5.26335684211966765168537419413, −4.54559335424532040159288143203, −3.41927332372214496445173391946, −1.72668040597491627609012376965, 0, 1.72668040597491627609012376965, 3.41927332372214496445173391946, 4.54559335424532040159288143203, 5.26335684211966765168537419413, 6.18321977004902932338517666304, 6.58963953086218031858774070993, 7.924410314379776063164047280117, 10.08776028973501134731107608627, 10.65631294363772409106747934471

Graph of the $Z$-function along the critical line