L(s) = 1 | + 2.16i·2-s − 2.56i·3-s + 27.2·4-s + 5.57·6-s + 75.5i·7-s + 128. i·8-s + 236.·9-s + 624.·11-s − 70.1i·12-s − 169i·13-s − 163.·14-s + 594.·16-s − 2.34e3i·17-s + 512. i·18-s + 283.·19-s + ⋯ |
L(s) = 1 | + 0.383i·2-s − 0.164i·3-s + 0.853·4-s + 0.0631·6-s + 0.583i·7-s + 0.710i·8-s + 0.972·9-s + 1.55·11-s − 0.140i·12-s − 0.277i·13-s − 0.223·14-s + 0.580·16-s − 1.96i·17-s + 0.372i·18-s + 0.180·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(0.894−0.447i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), 0.894−0.447i)
|
Particular Values
L(3) |
≈ |
3.334247928 |
L(21) |
≈ |
3.334247928 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1+169iT |
good | 2 | 1−2.16iT−32T2 |
| 3 | 1+2.56iT−243T2 |
| 7 | 1−75.5iT−1.68e4T2 |
| 11 | 1−624.T+1.61e5T2 |
| 17 | 1+2.34e3iT−1.41e6T2 |
| 19 | 1−283.T+2.47e6T2 |
| 23 | 1−2.04e3iT−6.43e6T2 |
| 29 | 1+6.17e3T+2.05e7T2 |
| 31 | 1−687.T+2.86e7T2 |
| 37 | 1−2.79e3iT−6.93e7T2 |
| 41 | 1−8.23e3T+1.15e8T2 |
| 43 | 1+1.32e4iT−1.47e8T2 |
| 47 | 1−1.54e4iT−2.29e8T2 |
| 53 | 1+9.60e3iT−4.18e8T2 |
| 59 | 1+4.01e4T+7.14e8T2 |
| 61 | 1−3.25e4T+8.44e8T2 |
| 67 | 1+1.59e4iT−1.35e9T2 |
| 71 | 1−6.02e4T+1.80e9T2 |
| 73 | 1+3.54e4iT−2.07e9T2 |
| 79 | 1+6.50e4T+3.07e9T2 |
| 83 | 1−8.60e4iT−3.93e9T2 |
| 89 | 1−1.39e5T+5.58e9T2 |
| 97 | 1−8.01e3iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.08031277700771620970481198719, −9.707209800225198220755367452589, −9.081124816873889724971641964821, −7.62927986632082208265675385195, −7.06413692121648539715785665848, −6.13354678865165297277288440490, −5.05272226834863098845138913528, −3.59005226691299749399250376579, −2.24389808082366553954672723115, −1.09635142873937471557404468002,
1.11956508238631164664216364784, 1.91194990697267016358651702744, 3.68698116314434204709597803059, 4.19219122233422467571212945588, 6.07637490598718414916003825019, 6.78555559797945081866672712560, 7.68367465747946515256152065341, 9.019578055159362458442436782815, 10.01496731917669498611712319077, 10.70405250720178784298019422753