Properties

Label 2-3264-8.5-c1-0-21
Degree $2$
Conductor $3264$
Sign $-0.258 - 0.965i$
Analytic cond. $26.0631$
Root an. cond. $5.10521$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 0.792i·5-s + 3.46·7-s − 9-s + 3.37i·11-s + 5.84i·13-s + 0.792·15-s − 17-s + 0.627i·19-s + 3.46i·21-s + 5.84·23-s + 4.37·25-s i·27-s + 5.04i·29-s − 6.63·31-s + ⋯
L(s)  = 1  + 0.577i·3-s − 0.354i·5-s + 1.30·7-s − 0.333·9-s + 1.01i·11-s + 1.61i·13-s + 0.204·15-s − 0.242·17-s + 0.144i·19-s + 0.755i·21-s + 1.21·23-s + 0.874·25-s − 0.192i·27-s + 0.937i·29-s − 1.19·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3264 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.258 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3264\)    =    \(2^{6} \cdot 3 \cdot 17\)
Sign: $-0.258 - 0.965i$
Analytic conductor: \(26.0631\)
Root analytic conductor: \(5.10521\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3264} (1633, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3264,\ (\ :1/2),\ -0.258 - 0.965i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.927201028\)
\(L(\frac12)\) \(\approx\) \(1.927201028\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
17 \( 1 + T \)
good5 \( 1 + 0.792iT - 5T^{2} \)
7 \( 1 - 3.46T + 7T^{2} \)
11 \( 1 - 3.37iT - 11T^{2} \)
13 \( 1 - 5.84iT - 13T^{2} \)
19 \( 1 - 0.627iT - 19T^{2} \)
23 \( 1 - 5.84T + 23T^{2} \)
29 \( 1 - 5.04iT - 29T^{2} \)
31 \( 1 + 6.63T + 31T^{2} \)
37 \( 1 + 3.16iT - 37T^{2} \)
41 \( 1 + 8.11T + 41T^{2} \)
43 \( 1 + 6.11iT - 43T^{2} \)
47 \( 1 + 6.92T + 47T^{2} \)
53 \( 1 - 1.87iT - 53T^{2} \)
59 \( 1 - 2.74iT - 59T^{2} \)
61 \( 1 - 5.34iT - 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 + 8.51T + 71T^{2} \)
73 \( 1 - 16.7T + 73T^{2} \)
79 \( 1 + 3.46T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 15.4T + 89T^{2} \)
97 \( 1 - 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.902307951213832504587792682785, −8.357202769973474900036256022176, −7.16820779226728103351489670074, −6.93224184408061289520490977152, −5.55673103050149638330476316775, −4.78035233151220408613878622874, −4.53699142426775996245585584455, −3.49883433206534173990013645525, −2.12873781690962140181878015216, −1.44227188342826731851423699486, 0.60242863589734796587190692136, 1.62873536493018476074239795153, 2.81693907621653321645051906960, 3.43240745386328841798426135708, 4.84161548867832528077434306728, 5.32128684851171332735802218526, 6.19754885479902958820350685662, 6.99962239825969591739159701443, 7.85613167089990326054598526043, 8.243642599403387595021653160397

Graph of the $Z$-function along the critical line