L(s) = 1 | + i·3-s − 0.792i·5-s + 3.46·7-s − 9-s + 3.37i·11-s + 5.84i·13-s + 0.792·15-s − 17-s + 0.627i·19-s + 3.46i·21-s + 5.84·23-s + 4.37·25-s − i·27-s + 5.04i·29-s − 6.63·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.354i·5-s + 1.30·7-s − 0.333·9-s + 1.01i·11-s + 1.61i·13-s + 0.204·15-s − 0.242·17-s + 0.144i·19-s + 0.755i·21-s + 1.21·23-s + 0.874·25-s − 0.192i·27-s + 0.937i·29-s − 1.19·31-s + ⋯ |
Λ(s)=(=(3264s/2ΓC(s)L(s)(−0.258−0.965i)Λ(2−s)
Λ(s)=(=(3264s/2ΓC(s+1/2)L(s)(−0.258−0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
3264
= 26⋅3⋅17
|
Sign: |
−0.258−0.965i
|
Analytic conductor: |
26.0631 |
Root analytic conductor: |
5.10521 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3264(1633,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3264, ( :1/2), −0.258−0.965i)
|
Particular Values
L(1) |
≈ |
1.927201028 |
L(21) |
≈ |
1.927201028 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 17 | 1+T |
good | 5 | 1+0.792iT−5T2 |
| 7 | 1−3.46T+7T2 |
| 11 | 1−3.37iT−11T2 |
| 13 | 1−5.84iT−13T2 |
| 19 | 1−0.627iT−19T2 |
| 23 | 1−5.84T+23T2 |
| 29 | 1−5.04iT−29T2 |
| 31 | 1+6.63T+31T2 |
| 37 | 1+3.16iT−37T2 |
| 41 | 1+8.11T+41T2 |
| 43 | 1+6.11iT−43T2 |
| 47 | 1+6.92T+47T2 |
| 53 | 1−1.87iT−53T2 |
| 59 | 1−2.74iT−59T2 |
| 61 | 1−5.34iT−61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+8.51T+71T2 |
| 73 | 1−16.7T+73T2 |
| 79 | 1+3.46T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+15.4T+89T2 |
| 97 | 1−14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.902307951213832504587792682785, −8.357202769973474900036256022176, −7.16820779226728103351489670074, −6.93224184408061289520490977152, −5.55673103050149638330476316775, −4.78035233151220408613878622874, −4.53699142426775996245585584455, −3.49883433206534173990013645525, −2.12873781690962140181878015216, −1.44227188342826731851423699486,
0.60242863589734796587190692136, 1.62873536493018476074239795153, 2.81693907621653321645051906960, 3.43240745386328841798426135708, 4.84161548867832528077434306728, 5.32128684851171332735802218526, 6.19754885479902958820350685662, 6.99962239825969591739159701443, 7.85613167089990326054598526043, 8.243642599403387595021653160397