L(s) = 1 | + (−0.848 − 0.529i)3-s + (0.990 + 0.139i)4-s + (1.63 − 1.10i)5-s + (0.438 + 0.898i)9-s + (−0.766 − 0.642i)12-s + (−1.96 + 0.0687i)15-s + (0.961 + 0.275i)16-s + (1.77 − 0.863i)20-s + (−1.70 + 0.300i)23-s + (1.07 − 2.66i)25-s + (0.104 − 0.994i)27-s + (1.10 + 1.06i)31-s + (0.309 + 0.951i)36-s + (0.339 − 0.0722i)37-s + (1.70 + 0.984i)45-s + ⋯ |
L(s) = 1 | + (−0.848 − 0.529i)3-s + (0.990 + 0.139i)4-s + (1.63 − 1.10i)5-s + (0.438 + 0.898i)9-s + (−0.766 − 0.642i)12-s + (−1.96 + 0.0687i)15-s + (0.961 + 0.275i)16-s + (1.77 − 0.863i)20-s + (−1.70 + 0.300i)23-s + (1.07 − 2.66i)25-s + (0.104 − 0.994i)27-s + (1.10 + 1.06i)31-s + (0.309 + 0.951i)36-s + (0.339 − 0.0722i)37-s + (1.70 + 0.984i)45-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.568+0.822i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.568+0.822i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
0.568+0.822i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(1334,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), 0.568+0.822i)
|
Particular Values
L(21) |
≈ |
1.656660495 |
L(21) |
≈ |
1.656660495 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.848+0.529i)T |
| 11 | 1 |
good | 2 | 1+(−0.990−0.139i)T2 |
| 5 | 1+(−1.63+1.10i)T+(0.374−0.927i)T2 |
| 7 | 1+(0.559+0.829i)T2 |
| 13 | 1+(−0.882−0.469i)T2 |
| 17 | 1+(0.978+0.207i)T2 |
| 19 | 1+(0.913+0.406i)T2 |
| 23 | 1+(1.70−0.300i)T+(0.939−0.342i)T2 |
| 29 | 1+(−0.438+0.898i)T2 |
| 31 | 1+(−1.10−1.06i)T+(0.0348+0.999i)T2 |
| 37 | 1+(−0.339+0.0722i)T+(0.913−0.406i)T2 |
| 41 | 1+(−0.438−0.898i)T2 |
| 43 | 1+(0.766−0.642i)T2 |
| 47 | 1+(−0.0952−0.677i)T+(−0.961+0.275i)T2 |
| 53 | 1+(0.755+1.04i)T+(−0.309+0.951i)T2 |
| 59 | 1+(−1.01−0.791i)T+(0.241+0.970i)T2 |
| 61 | 1+(0.0348−0.999i)T2 |
| 67 | 1+(1.17−0.984i)T+(0.173−0.984i)T2 |
| 71 | 1+(0.680+0.0715i)T+(0.978+0.207i)T2 |
| 73 | 1+(−0.104+0.994i)T2 |
| 79 | 1+(0.990+0.139i)T2 |
| 83 | 1+(0.882−0.469i)T2 |
| 89 | 1+(1.5+0.866i)T+(0.5+0.866i)T2 |
| 97 | 1+(1.05−1.55i)T+(−0.374−0.927i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.545905002478211210567583561881, −8.003731634421338418731652107880, −6.96064248613560689157784830430, −6.31201910901425374717134521265, −5.81262365722620490783292739717, −5.21257525315089186326933393298, −4.29645924801665380740766312984, −2.69507873007885707706161528818, −1.86606113241617415364915335791, −1.23612967333083022947580551824,
1.52607123399347225913304649564, 2.40262458341313793041152527560, 3.20307889884968796085697716315, 4.38366274961087479552819070170, 5.56580220840992990309777959413, 5.98496456961289850757427377190, 6.45756700865933892647559977038, 7.09166011717856809910002653088, 8.050913954674918186660609041387, 9.410053394750038362495143994908