L(s) = 1 | + (−0.848 − 0.529i)3-s + (0.990 + 0.139i)4-s + (1.63 − 1.10i)5-s + (0.438 + 0.898i)9-s + (−0.766 − 0.642i)12-s + (−1.96 + 0.0687i)15-s + (0.961 + 0.275i)16-s + (1.77 − 0.863i)20-s + (−1.70 + 0.300i)23-s + (1.07 − 2.66i)25-s + (0.104 − 0.994i)27-s + (1.10 + 1.06i)31-s + (0.309 + 0.951i)36-s + (0.339 − 0.0722i)37-s + (1.70 + 0.984i)45-s + ⋯ |
L(s) = 1 | + (−0.848 − 0.529i)3-s + (0.990 + 0.139i)4-s + (1.63 − 1.10i)5-s + (0.438 + 0.898i)9-s + (−0.766 − 0.642i)12-s + (−1.96 + 0.0687i)15-s + (0.961 + 0.275i)16-s + (1.77 − 0.863i)20-s + (−1.70 + 0.300i)23-s + (1.07 − 2.66i)25-s + (0.104 − 0.994i)27-s + (1.10 + 1.06i)31-s + (0.309 + 0.951i)36-s + (0.339 − 0.0722i)37-s + (1.70 + 0.984i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.568 + 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.568 + 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.656660495\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.656660495\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.848 + 0.529i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.990 - 0.139i)T^{2} \) |
| 5 | \( 1 + (-1.63 + 1.10i)T + (0.374 - 0.927i)T^{2} \) |
| 7 | \( 1 + (0.559 + 0.829i)T^{2} \) |
| 13 | \( 1 + (-0.882 - 0.469i)T^{2} \) |
| 17 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 19 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 23 | \( 1 + (1.70 - 0.300i)T + (0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.438 + 0.898i)T^{2} \) |
| 31 | \( 1 + (-1.10 - 1.06i)T + (0.0348 + 0.999i)T^{2} \) |
| 37 | \( 1 + (-0.339 + 0.0722i)T + (0.913 - 0.406i)T^{2} \) |
| 41 | \( 1 + (-0.438 - 0.898i)T^{2} \) |
| 43 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.0952 - 0.677i)T + (-0.961 + 0.275i)T^{2} \) |
| 53 | \( 1 + (0.755 + 1.04i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-1.01 - 0.791i)T + (0.241 + 0.970i)T^{2} \) |
| 61 | \( 1 + (0.0348 - 0.999i)T^{2} \) |
| 67 | \( 1 + (1.17 - 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.680 + 0.0715i)T + (0.978 + 0.207i)T^{2} \) |
| 73 | \( 1 + (-0.104 + 0.994i)T^{2} \) |
| 79 | \( 1 + (0.990 + 0.139i)T^{2} \) |
| 83 | \( 1 + (0.882 - 0.469i)T^{2} \) |
| 89 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (1.05 - 1.55i)T + (-0.374 - 0.927i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.545905002478211210567583561881, −8.003731634421338418731652107880, −6.96064248613560689157784830430, −6.31201910901425374717134521265, −5.81262365722620490783292739717, −5.21257525315089186326933393298, −4.29645924801665380740766312984, −2.69507873007885707706161528818, −1.86606113241617415364915335791, −1.23612967333083022947580551824,
1.52607123399347225913304649564, 2.40262458341313793041152527560, 3.20307889884968796085697716315, 4.38366274961087479552819070170, 5.56580220840992990309777959413, 5.98496456961289850757427377190, 6.45756700865933892647559977038, 7.09166011717856809910002653088, 8.050913954674918186660609041387, 9.410053394750038362495143994908