Properties

Label 2-3267-11.8-c0-0-1
Degree $2$
Conductor $3267$
Sign $0.776 + 0.629i$
Analytic cond. $1.63044$
Root an. cond. $1.27688$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.309 − 0.951i)4-s + (1.83 + 0.596i)7-s + (−0.304 − 0.418i)13-s + (−0.809 − 0.587i)16-s + (1.34 − 0.437i)19-s + (−0.309 − 0.951i)25-s + (1.13 − 1.56i)28-s + (−1.40 + 1.01i)31-s + 1.41i·43-s + (2.21 + 1.60i)49-s + (−0.492 + 0.159i)52-s + (0.831 − 1.14i)61-s + (−0.809 + 0.587i)64-s − 1.73·67-s + (0.492 + 0.159i)73-s + ⋯
L(s)  = 1  + (0.309 − 0.951i)4-s + (1.83 + 0.596i)7-s + (−0.304 − 0.418i)13-s + (−0.809 − 0.587i)16-s + (1.34 − 0.437i)19-s + (−0.309 − 0.951i)25-s + (1.13 − 1.56i)28-s + (−1.40 + 1.01i)31-s + 1.41i·43-s + (2.21 + 1.60i)49-s + (−0.492 + 0.159i)52-s + (0.831 − 1.14i)61-s + (−0.809 + 0.587i)64-s − 1.73·67-s + (0.492 + 0.159i)73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 + 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 + 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3267\)    =    \(3^{3} \cdot 11^{2}\)
Sign: $0.776 + 0.629i$
Analytic conductor: \(1.63044\)
Root analytic conductor: \(1.27688\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3267} (2296, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3267,\ (\ :0),\ 0.776 + 0.629i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.670454802\)
\(L(\frac12)\) \(\approx\) \(1.670454802\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 + (-0.309 + 0.951i)T^{2} \)
5 \( 1 + (0.309 + 0.951i)T^{2} \)
7 \( 1 + (-1.83 - 0.596i)T + (0.809 + 0.587i)T^{2} \)
13 \( 1 + (0.304 + 0.418i)T + (-0.309 + 0.951i)T^{2} \)
17 \( 1 + (-0.309 - 0.951i)T^{2} \)
19 \( 1 + (-1.34 + 0.437i)T + (0.809 - 0.587i)T^{2} \)
23 \( 1 + T^{2} \)
29 \( 1 + (0.809 + 0.587i)T^{2} \)
31 \( 1 + (1.40 - 1.01i)T + (0.309 - 0.951i)T^{2} \)
37 \( 1 + (-0.809 - 0.587i)T^{2} \)
41 \( 1 + (0.809 - 0.587i)T^{2} \)
43 \( 1 - 1.41iT - T^{2} \)
47 \( 1 + (-0.809 + 0.587i)T^{2} \)
53 \( 1 + (0.309 - 0.951i)T^{2} \)
59 \( 1 + (-0.809 - 0.587i)T^{2} \)
61 \( 1 + (-0.831 + 1.14i)T + (-0.309 - 0.951i)T^{2} \)
67 \( 1 + 1.73T + T^{2} \)
71 \( 1 + (0.309 + 0.951i)T^{2} \)
73 \( 1 + (-0.492 - 0.159i)T + (0.809 + 0.587i)T^{2} \)
79 \( 1 + (-0.304 - 0.418i)T + (-0.309 + 0.951i)T^{2} \)
83 \( 1 + (-0.309 - 0.951i)T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.778283416708278123001854072352, −7.923399406818103638840591730883, −7.39307124777618580017454041053, −6.41782736838824107089606649835, −5.40635447902892503915551444764, −5.19495858522531893981043954340, −4.36961790662430934089483371882, −2.92508562816897517109392922132, −1.99435865501308734993850452317, −1.18920143630124494389179214403, 1.46741829347561648117891561707, 2.26815971663040867106034850829, 3.54630121080593589671291324978, 4.14883819720093513771396099831, 5.03734489667721323162576234370, 5.73923556404982947143949327324, 7.16001962700275869855861589362, 7.39805918383502590889406739924, 7.990087919011386982709375293523, 8.760863659997982818502349970741

Graph of the $Z$-function along the critical line