L(s) = 1 | + (0.309 − 0.951i)4-s + (1.83 + 0.596i)7-s + (−0.304 − 0.418i)13-s + (−0.809 − 0.587i)16-s + (1.34 − 0.437i)19-s + (−0.309 − 0.951i)25-s + (1.13 − 1.56i)28-s + (−1.40 + 1.01i)31-s + 1.41i·43-s + (2.21 + 1.60i)49-s + (−0.492 + 0.159i)52-s + (0.831 − 1.14i)61-s + (−0.809 + 0.587i)64-s − 1.73·67-s + (0.492 + 0.159i)73-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)4-s + (1.83 + 0.596i)7-s + (−0.304 − 0.418i)13-s + (−0.809 − 0.587i)16-s + (1.34 − 0.437i)19-s + (−0.309 − 0.951i)25-s + (1.13 − 1.56i)28-s + (−1.40 + 1.01i)31-s + 1.41i·43-s + (2.21 + 1.60i)49-s + (−0.492 + 0.159i)52-s + (0.831 − 1.14i)61-s + (−0.809 + 0.587i)64-s − 1.73·67-s + (0.492 + 0.159i)73-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.776+0.629i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(0.776+0.629i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
0.776+0.629i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(2296,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), 0.776+0.629i)
|
Particular Values
L(21) |
≈ |
1.670454802 |
L(21) |
≈ |
1.670454802 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(−0.309+0.951i)T2 |
| 5 | 1+(0.309+0.951i)T2 |
| 7 | 1+(−1.83−0.596i)T+(0.809+0.587i)T2 |
| 13 | 1+(0.304+0.418i)T+(−0.309+0.951i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(−1.34+0.437i)T+(0.809−0.587i)T2 |
| 23 | 1+T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 31 | 1+(1.40−1.01i)T+(0.309−0.951i)T2 |
| 37 | 1+(−0.809−0.587i)T2 |
| 41 | 1+(0.809−0.587i)T2 |
| 43 | 1−1.41iT−T2 |
| 47 | 1+(−0.809+0.587i)T2 |
| 53 | 1+(0.309−0.951i)T2 |
| 59 | 1+(−0.809−0.587i)T2 |
| 61 | 1+(−0.831+1.14i)T+(−0.309−0.951i)T2 |
| 67 | 1+1.73T+T2 |
| 71 | 1+(0.309+0.951i)T2 |
| 73 | 1+(−0.492−0.159i)T+(0.809+0.587i)T2 |
| 79 | 1+(−0.304−0.418i)T+(−0.309+0.951i)T2 |
| 83 | 1+(−0.309−0.951i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.778283416708278123001854072352, −7.923399406818103638840591730883, −7.39307124777618580017454041053, −6.41782736838824107089606649835, −5.40635447902892503915551444764, −5.19495858522531893981043954340, −4.36961790662430934089483371882, −2.92508562816897517109392922132, −1.99435865501308734993850452317, −1.18920143630124494389179214403,
1.46741829347561648117891561707, 2.26815971663040867106034850829, 3.54630121080593589671291324978, 4.14883819720093513771396099831, 5.03734489667721323162576234370, 5.73923556404982947143949327324, 7.16001962700275869855861589362, 7.39805918383502590889406739924, 7.990087919011386982709375293523, 8.760863659997982818502349970741