L(s) = 1 | + (−0.978 + 0.207i)4-s + (−0.104 + 0.994i)5-s + (0.913 − 0.406i)16-s + (−0.104 − 0.994i)20-s + (1 + 1.73i)23-s + (−0.913 − 0.406i)31-s + (−0.309 + 0.951i)37-s + (−0.978 − 0.207i)47-s + (−0.104 + 0.994i)49-s + (−0.809 + 0.587i)53-s + (−0.978 + 0.207i)59-s + (−0.809 + 0.587i)64-s + (0.5 + 0.866i)67-s + (−0.809 − 0.587i)71-s + (0.309 + 0.951i)80-s + ⋯ |
L(s) = 1 | + (−0.978 + 0.207i)4-s + (−0.104 + 0.994i)5-s + (0.913 − 0.406i)16-s + (−0.104 − 0.994i)20-s + (1 + 1.73i)23-s + (−0.913 − 0.406i)31-s + (−0.309 + 0.951i)37-s + (−0.978 − 0.207i)47-s + (−0.104 + 0.994i)49-s + (−0.809 + 0.587i)53-s + (−0.978 + 0.207i)59-s + (−0.809 + 0.587i)64-s + (0.5 + 0.866i)67-s + (−0.809 − 0.587i)71-s + (0.309 + 0.951i)80-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.509 - 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3267 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.509 - 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7481495083\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7481495083\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 5 | \( 1 + (0.104 - 0.994i)T + (-0.978 - 0.207i)T^{2} \) |
| 7 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 31 | \( 1 + (0.913 + 0.406i)T + (0.669 + 0.743i)T^{2} \) |
| 37 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.978 + 0.207i)T + (0.913 + 0.406i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.978 - 0.207i)T + (0.913 - 0.406i)T^{2} \) |
| 61 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 83 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 89 | \( 1 + 2T + T^{2} \) |
| 97 | \( 1 + (-0.104 - 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.202606488734546123972439270977, −8.308142820759727689462562170620, −7.54966288156008324667718041845, −7.01254372397019116801852401184, −6.01474678339651415569891320995, −5.24132896100674764644662322412, −4.42468690809598752094662416111, −3.43077939147794961493488788904, −2.97825849042611852837872480355, −1.45490200566881147822610228346,
0.49757716454336614095278597182, 1.67144306035248999820036698691, 3.09851753439624664637011447344, 4.09163191980560521742651966030, 4.82109951353587343163821252300, 5.24496523306584725108749674603, 6.22283269815819783694168032239, 7.12552822275765368173513627696, 8.136548456855850905701658031250, 8.676325850053130464016220119829