L(s) = 1 | + (−0.978 + 0.207i)4-s + (−0.104 + 0.994i)5-s + (0.913 − 0.406i)16-s + (−0.104 − 0.994i)20-s + (1 + 1.73i)23-s + (−0.913 − 0.406i)31-s + (−0.309 + 0.951i)37-s + (−0.978 − 0.207i)47-s + (−0.104 + 0.994i)49-s + (−0.809 + 0.587i)53-s + (−0.978 + 0.207i)59-s + (−0.809 + 0.587i)64-s + (0.5 + 0.866i)67-s + (−0.809 − 0.587i)71-s + (0.309 + 0.951i)80-s + ⋯ |
L(s) = 1 | + (−0.978 + 0.207i)4-s + (−0.104 + 0.994i)5-s + (0.913 − 0.406i)16-s + (−0.104 − 0.994i)20-s + (1 + 1.73i)23-s + (−0.913 − 0.406i)31-s + (−0.309 + 0.951i)37-s + (−0.978 − 0.207i)47-s + (−0.104 + 0.994i)49-s + (−0.809 + 0.587i)53-s + (−0.978 + 0.207i)59-s + (−0.809 + 0.587i)64-s + (0.5 + 0.866i)67-s + (−0.809 − 0.587i)71-s + (0.309 + 0.951i)80-s + ⋯ |
Λ(s)=(=(3267s/2ΓC(s)L(s)(−0.509−0.860i)Λ(1−s)
Λ(s)=(=(3267s/2ΓC(s)L(s)(−0.509−0.860i)Λ(1−s)
Degree: |
2 |
Conductor: |
3267
= 33⋅112
|
Sign: |
−0.509−0.860i
|
Analytic conductor: |
1.63044 |
Root analytic conductor: |
1.27688 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3267(1207,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3267, ( :0), −0.509−0.860i)
|
Particular Values
L(21) |
≈ |
0.7481495083 |
L(21) |
≈ |
0.7481495083 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+(0.978−0.207i)T2 |
| 5 | 1+(0.104−0.994i)T+(−0.978−0.207i)T2 |
| 7 | 1+(0.104−0.994i)T2 |
| 13 | 1+(−0.669−0.743i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(0.809−0.587i)T2 |
| 23 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.104−0.994i)T2 |
| 31 | 1+(0.913+0.406i)T+(0.669+0.743i)T2 |
| 37 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
| 41 | 1+(0.104+0.994i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(0.978+0.207i)T+(0.913+0.406i)T2 |
| 53 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 59 | 1+(0.978−0.207i)T+(0.913−0.406i)T2 |
| 61 | 1+(−0.669+0.743i)T2 |
| 67 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
| 73 | 1+(0.809+0.587i)T2 |
| 79 | 1+(0.978−0.207i)T2 |
| 83 | 1+(−0.669+0.743i)T2 |
| 89 | 1+2T+T2 |
| 97 | 1+(−0.104−0.994i)T+(−0.978+0.207i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.202606488734546123972439270977, −8.308142820759727689462562170620, −7.54966288156008324667718041845, −7.01254372397019116801852401184, −6.01474678339651415569891320995, −5.24132896100674764644662322412, −4.42468690809598752094662416111, −3.43077939147794961493488788904, −2.97825849042611852837872480355, −1.45490200566881147822610228346,
0.49757716454336614095278597182, 1.67144306035248999820036698691, 3.09851753439624664637011447344, 4.09163191980560521742651966030, 4.82109951353587343163821252300, 5.24496523306584725108749674603, 6.22283269815819783694168032239, 7.12552822275765368173513627696, 8.136548456855850905701658031250, 8.676325850053130464016220119829