L(s) = 1 | + (−2.09 + 2.09i)5-s + (2.62 + 0.311i)7-s + (1.65 − 1.65i)11-s + (1.34 − 3.34i)13-s + 1.34·17-s + (0.481 − 0.481i)19-s − 5.63i·23-s − 3.78i·25-s − 5.32·29-s + (−0.730 + 0.730i)31-s + (−6.16 + 4.85i)35-s + (5.37 − 5.37i)37-s + (−6.40 + 6.40i)41-s − 8.68i·43-s + (−6.94 − 6.94i)47-s + ⋯ |
L(s) = 1 | + (−0.937 + 0.937i)5-s + (0.993 + 0.117i)7-s + (0.497 − 0.497i)11-s + (0.373 − 0.927i)13-s + 0.325·17-s + (0.110 − 0.110i)19-s − 1.17i·23-s − 0.757i·25-s − 0.988·29-s + (−0.131 + 0.131i)31-s + (−1.04 + 0.820i)35-s + (0.882 − 0.882i)37-s + (−1.00 + 1.00i)41-s − 1.32i·43-s + (−1.01 − 1.01i)47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(0.700+0.713i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(0.700+0.713i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
0.700+0.713i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(1945,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), 0.700+0.713i)
|
Particular Values
L(1) |
≈ |
1.566257279 |
L(21) |
≈ |
1.566257279 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−2.62−0.311i)T |
| 13 | 1+(−1.34+3.34i)T |
good | 5 | 1+(2.09−2.09i)T−5iT2 |
| 11 | 1+(−1.65+1.65i)T−11iT2 |
| 17 | 1−1.34T+17T2 |
| 19 | 1+(−0.481+0.481i)T−19iT2 |
| 23 | 1+5.63iT−23T2 |
| 29 | 1+5.32T+29T2 |
| 31 | 1+(0.730−0.730i)T−31iT2 |
| 37 | 1+(−5.37+5.37i)T−37iT2 |
| 41 | 1+(6.40−6.40i)T−41iT2 |
| 43 | 1+8.68iT−43T2 |
| 47 | 1+(6.94+6.94i)T+47iT2 |
| 53 | 1−2.01T+53T2 |
| 59 | 1+(1.55+1.55i)T+59iT2 |
| 61 | 1+0.0367iT−61T2 |
| 67 | 1+(7.90+7.90i)T+67iT2 |
| 71 | 1+(0.368+0.368i)T+71iT2 |
| 73 | 1+(−1.66−1.66i)T+73iT2 |
| 79 | 1+2.49T+79T2 |
| 83 | 1+(−5.60+5.60i)T−83iT2 |
| 89 | 1+(−2.09−2.09i)T+89iT2 |
| 97 | 1+(−5.68+5.68i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.393178737441708656896619140020, −7.81432094383397906651765392418, −7.20892864275158065169186232113, −6.34591552141396016325151181420, −5.53567985027419634671934067843, −4.63343607120164173668371441696, −3.69339871160495285544014904458, −3.12343148662899698160830382515, −1.94831071911158883466832255663, −0.54902520179236608340594163097,
1.14274222094388192464515919464, 1.84350597742890555041996128312, 3.42978670435590928548104630167, 4.23237404525576382253022576627, 4.70829708378670669779993550084, 5.54925527290507023383965045452, 6.56194769063453138277382008278, 7.58126200837740237504992745715, 7.84586797817623782305603939093, 8.759389149870671187651866631842