L(s) = 1 | + (1.55 + 1.55i)5-s + (1.18 − 2.36i)7-s + (0.517 + 0.517i)11-s + (1.24 − 3.38i)13-s − 7.17·17-s + (−2.67 − 2.67i)19-s − 3.88i·23-s − 0.146i·25-s − 9.37·29-s + (1.62 + 1.62i)31-s + (5.53 − 1.83i)35-s + (−5.07 − 5.07i)37-s + (−6.07 − 6.07i)41-s − 5.25i·43-s + (−0.280 + 0.280i)47-s + ⋯ |
L(s) = 1 | + (0.696 + 0.696i)5-s + (0.448 − 0.894i)7-s + (0.156 + 0.156i)11-s + (0.345 − 0.938i)13-s − 1.74·17-s + (−0.614 − 0.614i)19-s − 0.810i·23-s − 0.0292i·25-s − 1.74·29-s + (0.291 + 0.291i)31-s + (0.934 − 0.310i)35-s + (−0.834 − 0.834i)37-s + (−0.948 − 0.948i)41-s − 0.801i·43-s + (−0.0408 + 0.0408i)47-s + ⋯ |
Λ(s)=(=(3276s/2ΓC(s)L(s)(−0.500+0.865i)Λ(2−s)
Λ(s)=(=(3276s/2ΓC(s+1/2)L(s)(−0.500+0.865i)Λ(1−s)
Degree: |
2 |
Conductor: |
3276
= 22⋅32⋅7⋅13
|
Sign: |
−0.500+0.865i
|
Analytic conductor: |
26.1589 |
Root analytic conductor: |
5.11458 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3276(2449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3276, ( :1/2), −0.500+0.865i)
|
Particular Values
L(1) |
≈ |
1.202181394 |
L(21) |
≈ |
1.202181394 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−1.18+2.36i)T |
| 13 | 1+(−1.24+3.38i)T |
good | 5 | 1+(−1.55−1.55i)T+5iT2 |
| 11 | 1+(−0.517−0.517i)T+11iT2 |
| 17 | 1+7.17T+17T2 |
| 19 | 1+(2.67+2.67i)T+19iT2 |
| 23 | 1+3.88iT−23T2 |
| 29 | 1+9.37T+29T2 |
| 31 | 1+(−1.62−1.62i)T+31iT2 |
| 37 | 1+(5.07+5.07i)T+37iT2 |
| 41 | 1+(6.07+6.07i)T+41iT2 |
| 43 | 1+5.25iT−43T2 |
| 47 | 1+(0.280−0.280i)T−47iT2 |
| 53 | 1−8.34T+53T2 |
| 59 | 1+(4.23−4.23i)T−59iT2 |
| 61 | 1−5.93iT−61T2 |
| 67 | 1+(8.85−8.85i)T−67iT2 |
| 71 | 1+(7.82−7.82i)T−71iT2 |
| 73 | 1+(−6.56+6.56i)T−73iT2 |
| 79 | 1+14.3T+79T2 |
| 83 | 1+(−7.45−7.45i)T+83iT2 |
| 89 | 1+(1.55−1.55i)T−89iT2 |
| 97 | 1+(−7.33−7.33i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.628224873260600305953794880022, −7.38771983985478505148365709620, −6.98918157224863431962675906523, −6.23084011461144620233414703810, −5.40311206467828710025409744643, −4.44191404134460072037175831798, −3.74220582108548194207589846624, −2.56597795083153808137310908896, −1.84003582986176350464656815048, −0.32581592800466845761802418816,
1.71498637101189785313466181428, 1.94283766000368905107725620686, 3.36839029929544958645493134287, 4.45167421163417593800647607234, 5.02914302834159960577353770682, 5.96959631828536645940354605301, 6.39055758665412101881722194132, 7.44101582560570339012444711525, 8.417632756502913698451823216587, 8.953486312788529670147696824461