Properties

Label 4-329e2-1.1-c0e2-0-0
Degree $4$
Conductor $108241$
Sign $1$
Analytic cond. $0.0269591$
Root an. cond. $0.405206$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s − 7-s + 2·8-s + 9-s − 2·12-s − 14-s + 2·16-s + 17-s + 18-s + 2·21-s − 4·24-s − 25-s + 2·27-s − 28-s + 2·32-s + 34-s + 36-s + 37-s + 2·42-s − 47-s − 4·48-s − 50-s − 2·51-s + 53-s + ⋯
L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s − 7-s + 2·8-s + 9-s − 2·12-s − 14-s + 2·16-s + 17-s + 18-s + 2·21-s − 4·24-s − 25-s + 2·27-s − 28-s + 2·32-s + 34-s + 36-s + 37-s + 2·42-s − 47-s − 4·48-s − 50-s − 2·51-s + 53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108241 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108241 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(108241\)    =    \(7^{2} \cdot 47^{2}\)
Sign: $1$
Analytic conductor: \(0.0269591\)
Root analytic conductor: \(0.405206\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 108241,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5982080586\)
\(L(\frac12)\) \(\approx\) \(0.5982080586\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( 1 + T + T^{2} \)
47$C_2$ \( 1 + T + T^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
59$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 + T + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.83988006959751153266928827298, −11.61522390432652797060404954170, −11.34400716457985881643436985485, −10.90672704503313158336709174108, −10.16755714907701894495099559863, −10.16158649940227520378359334706, −9.688275521645396995568294994764, −8.624463388835655697389509257478, −8.169032658583608566069655164604, −7.46253857929727232494147872029, −6.95398221082477526294204008166, −6.62079931918439691961234634925, −5.92795201129495718593740288338, −5.63318403982791156057331750624, −5.40786190130025409057174137241, −4.54907603163398575805880359415, −4.19381485711651291004855249184, −3.29721858350856258410418911185, −2.63006638421219917034747835911, −1.31151289050695141982660107552, 1.31151289050695141982660107552, 2.63006638421219917034747835911, 3.29721858350856258410418911185, 4.19381485711651291004855249184, 4.54907603163398575805880359415, 5.40786190130025409057174137241, 5.63318403982791156057331750624, 5.92795201129495718593740288338, 6.62079931918439691961234634925, 6.95398221082477526294204008166, 7.46253857929727232494147872029, 8.169032658583608566069655164604, 8.624463388835655697389509257478, 9.688275521645396995568294994764, 10.16158649940227520378359334706, 10.16755714907701894495099559863, 10.90672704503313158336709174108, 11.34400716457985881643436985485, 11.61522390432652797060404954170, 11.83988006959751153266928827298

Graph of the $Z$-function along the critical line