Properties

Label 2-33-1.1-c3-0-0
Degree $2$
Conductor $33$
Sign $1$
Analytic cond. $1.94706$
Root an. cond. $1.39537$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.42·2-s − 3·3-s + 11.5·4-s + 2.84·5-s + 13.2·6-s + 31.6·7-s − 15.8·8-s + 9·9-s − 12.6·10-s − 11·11-s − 34.7·12-s + 5.15·13-s − 140.·14-s − 8.54·15-s − 22.6·16-s + 121.·17-s − 39.8·18-s + 34.8·19-s + 32.9·20-s − 95.0·21-s + 48.6·22-s + 116.·23-s + 47.4·24-s − 116.·25-s − 22.7·26-s − 27·27-s + 366.·28-s + ⋯
L(s)  = 1  − 1.56·2-s − 0.577·3-s + 1.44·4-s + 0.254·5-s + 0.903·6-s + 1.71·7-s − 0.699·8-s + 0.333·9-s − 0.398·10-s − 0.301·11-s − 0.835·12-s + 0.109·13-s − 2.67·14-s − 0.147·15-s − 0.353·16-s + 1.73·17-s − 0.521·18-s + 0.420·19-s + 0.368·20-s − 0.988·21-s + 0.471·22-s + 1.05·23-s + 0.403·24-s − 0.935·25-s − 0.171·26-s − 0.192·27-s + 2.47·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $1$
Analytic conductor: \(1.94706\)
Root analytic conductor: \(1.39537\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6207980817\)
\(L(\frac12)\) \(\approx\) \(0.6207980817\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
11 \( 1 + 11T \)
good2 \( 1 + 4.42T + 8T^{2} \)
5 \( 1 - 2.84T + 125T^{2} \)
7 \( 1 - 31.6T + 343T^{2} \)
13 \( 1 - 5.15T + 2.19e3T^{2} \)
17 \( 1 - 121.T + 4.91e3T^{2} \)
19 \( 1 - 34.8T + 6.85e3T^{2} \)
23 \( 1 - 116.T + 1.21e4T^{2} \)
29 \( 1 + 69.4T + 2.43e4T^{2} \)
31 \( 1 - 140.T + 2.97e4T^{2} \)
37 \( 1 + 420.T + 5.06e4T^{2} \)
41 \( 1 + 322.T + 6.89e4T^{2} \)
43 \( 1 - 321.T + 7.95e4T^{2} \)
47 \( 1 + 231.T + 1.03e5T^{2} \)
53 \( 1 - 4.91T + 1.48e5T^{2} \)
59 \( 1 - 406.T + 2.05e5T^{2} \)
61 \( 1 + 556.T + 2.26e5T^{2} \)
67 \( 1 - 84.7T + 3.00e5T^{2} \)
71 \( 1 - 49.0T + 3.57e5T^{2} \)
73 \( 1 - 785.T + 3.89e5T^{2} \)
79 \( 1 + 383.T + 4.93e5T^{2} \)
83 \( 1 + 930.T + 5.71e5T^{2} \)
89 \( 1 + 732.T + 7.04e5T^{2} \)
97 \( 1 + 1.17e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.81831671504779142087347297125, −15.43766405448659409016357141234, −13.99363146756414607205109330575, −11.93654204009773310562450625040, −10.95980477158803958093093921586, −9.918859945941867237824488883979, −8.380222906896667839992074325438, −7.38687948636624159398935100409, −5.27021583651063597511424464986, −1.40365882153410304370441844951, 1.40365882153410304370441844951, 5.27021583651063597511424464986, 7.38687948636624159398935100409, 8.380222906896667839992074325438, 9.918859945941867237824488883979, 10.95980477158803958093093921586, 11.93654204009773310562450625040, 13.99363146756414607205109330575, 15.43766405448659409016357141234, 16.81831671504779142087347297125

Graph of the $Z$-function along the critical line