L(s) = 1 | + (−0.882 + 2.71i)2-s + (4.90 − 1.71i)3-s + (−0.124 − 0.0905i)4-s + (4.91 − 1.59i)5-s + (0.325 + 14.8i)6-s + (−9.45 + 13.0i)7-s + (−18.1 + 13.1i)8-s + (21.1 − 16.8i)9-s + 14.7i·10-s + (−5.09 − 36.1i)11-s + (−0.766 − 0.230i)12-s + (16.5 + 5.38i)13-s + (−26.9 − 37.1i)14-s + (21.3 − 16.2i)15-s + (−20.1 − 62.0i)16-s + (−30.8 − 94.8i)17-s + ⋯ |
L(s) = 1 | + (−0.311 + 0.960i)2-s + (0.944 − 0.329i)3-s + (−0.0155 − 0.0113i)4-s + (0.439 − 0.142i)5-s + (0.0221 + 1.00i)6-s + (−0.510 + 0.702i)7-s + (−0.801 + 0.581i)8-s + (0.782 − 0.622i)9-s + 0.466i·10-s + (−0.139 − 0.990i)11-s + (−0.0184 − 0.00554i)12-s + (0.353 + 0.114i)13-s + (−0.515 − 0.709i)14-s + (0.368 − 0.279i)15-s + (−0.314 − 0.969i)16-s + (−0.439 − 1.35i)17-s + ⋯ |
Λ(s)=(=(33s/2ΓC(s)L(s)(0.468−0.883i)Λ(4−s)
Λ(s)=(=(33s/2ΓC(s+3/2)L(s)(0.468−0.883i)Λ(1−s)
Degree: |
2 |
Conductor: |
33
= 3⋅11
|
Sign: |
0.468−0.883i
|
Analytic conductor: |
1.94706 |
Root analytic conductor: |
1.39537 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ33(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 33, ( :3/2), 0.468−0.883i)
|
Particular Values
L(2) |
≈ |
1.23933+0.745153i |
L(21) |
≈ |
1.23933+0.745153i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−4.90+1.71i)T |
| 11 | 1+(5.09+36.1i)T |
good | 2 | 1+(0.882−2.71i)T+(−6.47−4.70i)T2 |
| 5 | 1+(−4.91+1.59i)T+(101.−73.4i)T2 |
| 7 | 1+(9.45−13.0i)T+(−105.−326.i)T2 |
| 13 | 1+(−16.5−5.38i)T+(1.77e3+1.29e3i)T2 |
| 17 | 1+(30.8+94.8i)T+(−3.97e3+2.88e3i)T2 |
| 19 | 1+(27.1+37.3i)T+(−2.11e3+6.52e3i)T2 |
| 23 | 1−113.iT−1.21e4T2 |
| 29 | 1+(−110.−80.2i)T+(7.53e3+2.31e4i)T2 |
| 31 | 1+(−26.9+82.9i)T+(−2.41e4−1.75e4i)T2 |
| 37 | 1+(216.+157.i)T+(1.56e4+4.81e4i)T2 |
| 41 | 1+(−21.4+15.5i)T+(2.12e4−6.55e4i)T2 |
| 43 | 1−487.iT−7.95e4T2 |
| 47 | 1+(−35.3−48.6i)T+(−3.20e4+9.87e4i)T2 |
| 53 | 1+(−472.−153.i)T+(1.20e5+8.75e4i)T2 |
| 59 | 1+(432.−594.i)T+(−6.34e4−1.95e5i)T2 |
| 61 | 1+(−817.+265.i)T+(1.83e5−1.33e5i)T2 |
| 67 | 1−507.T+3.00e5T2 |
| 71 | 1+(980.−318.i)T+(2.89e5−2.10e5i)T2 |
| 73 | 1+(173.−238.i)T+(−1.20e5−3.69e5i)T2 |
| 79 | 1+(576.+187.i)T+(3.98e5+2.89e5i)T2 |
| 83 | 1+(−39.9−122.i)T+(−4.62e5+3.36e5i)T2 |
| 89 | 1+811.iT−7.04e5T2 |
| 97 | 1+(−69.6+214.i)T+(−7.38e5−5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.08845653053080266510311356188, −15.53526069369978445723398630798, −14.15524596708766301235918862222, −13.17101724773071223903801633166, −11.63296376826875181684806503581, −9.377999972402967986415012163626, −8.611481372456702636288596885177, −7.19650692967345661802187891516, −5.86777798127923540076194789436, −2.84341583733368694235431141278,
2.09925376066474982606005748051, 3.88069030332344983264937873919, 6.67402340235424028372737839532, 8.581826217731287210083299762417, 10.17051398608881263470064274947, 10.34466981954524859079962270063, 12.39235967277140646818414853011, 13.46130146427127657645952900619, 14.81736892621768921957645459917, 15.82520053480503653290614241292