L(s) = 1 | + (2.97 + 2.16i)2-s + (4.28 + 2.94i)3-s + (1.70 + 5.24i)4-s + (−10.1 − 13.9i)5-s + (6.38 + 18.0i)6-s + (−16.0 + 5.21i)7-s + (2.82 − 8.70i)8-s + (9.69 + 25.1i)9-s − 63.2i·10-s + (36.4 + 0.331i)11-s + (−8.11 + 27.4i)12-s + (−34.3 + 47.2i)13-s + (−59.0 − 19.1i)14-s + (−2.38 − 89.4i)15-s + (62.8 − 45.6i)16-s + (−1.44 + 1.05i)17-s + ⋯ |
L(s) = 1 | + (1.05 + 0.763i)2-s + (0.824 + 0.566i)3-s + (0.212 + 0.655i)4-s + (−0.905 − 1.24i)5-s + (0.434 + 1.22i)6-s + (−0.867 + 0.281i)7-s + (0.124 − 0.384i)8-s + (0.359 + 0.933i)9-s − 2.00i·10-s + (0.999 + 0.00908i)11-s + (−0.195 + 0.660i)12-s + (−0.732 + 1.00i)13-s + (−1.12 − 0.366i)14-s + (−0.0410 − 1.53i)15-s + (0.982 − 0.713i)16-s + (−0.0206 + 0.0149i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.629 - 0.777i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.629 - 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.89599 + 0.904804i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.89599 + 0.904804i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-4.28 - 2.94i)T \) |
| 11 | \( 1 + (-36.4 - 0.331i)T \) |
good | 2 | \( 1 + (-2.97 - 2.16i)T + (2.47 + 7.60i)T^{2} \) |
| 5 | \( 1 + (10.1 + 13.9i)T + (-38.6 + 118. i)T^{2} \) |
| 7 | \( 1 + (16.0 - 5.21i)T + (277. - 201. i)T^{2} \) |
| 13 | \( 1 + (34.3 - 47.2i)T + (-678. - 2.08e3i)T^{2} \) |
| 17 | \( 1 + (1.44 - 1.05i)T + (1.51e3 - 4.67e3i)T^{2} \) |
| 19 | \( 1 + (22.6 + 7.35i)T + (5.54e3 + 4.03e3i)T^{2} \) |
| 23 | \( 1 + 75.4iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-17.7 - 54.5i)T + (-1.97e4 + 1.43e4i)T^{2} \) |
| 31 | \( 1 + (-127. - 92.9i)T + (9.20e3 + 2.83e4i)T^{2} \) |
| 37 | \( 1 + (71.2 + 219. i)T + (-4.09e4 + 2.97e4i)T^{2} \) |
| 41 | \( 1 + (50.3 - 154. i)T + (-5.57e4 - 4.05e4i)T^{2} \) |
| 43 | \( 1 + 128. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (404. + 131. i)T + (8.39e4 + 6.10e4i)T^{2} \) |
| 53 | \( 1 + (-357. + 492. i)T + (-4.60e4 - 1.41e5i)T^{2} \) |
| 59 | \( 1 + (13.0 - 4.23i)T + (1.66e5 - 1.20e5i)T^{2} \) |
| 61 | \( 1 + (-455. - 626. i)T + (-7.01e4 + 2.15e5i)T^{2} \) |
| 67 | \( 1 - 199.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (304. + 418. i)T + (-1.10e5 + 3.40e5i)T^{2} \) |
| 73 | \( 1 + (-930. + 302. i)T + (3.14e5 - 2.28e5i)T^{2} \) |
| 79 | \( 1 + (486. - 669. i)T + (-1.52e5 - 4.68e5i)T^{2} \) |
| 83 | \( 1 + (-443. + 322. i)T + (1.76e5 - 5.43e5i)T^{2} \) |
| 89 | \( 1 - 399. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (717. + 521. i)T + (2.82e5 + 8.68e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.25895713414696321338377447398, −15.16056162069925470181916248203, −14.22705353975509790874966914224, −12.97943748555179547140958435321, −12.04654349153605282356401351730, −9.658669707271825406117471326026, −8.571565176201064749376012668417, −6.86919074240482039174424965310, −4.83902511651706330803983162769, −3.84892063279643382285790673381,
2.88869007775586541087724832811, 3.80520027502689347425150235771, 6.62021025151045956301235593227, 7.919045274774202063652683982059, 10.00619966012322696544410093775, 11.50571316827350810384735983053, 12.47353558695288736790390084791, 13.59011122868679582422998216743, 14.61522932598361066920579183424, 15.35955925284234418091993071736