L(s) = 1 | + (2.97 + 2.16i)2-s + (4.28 + 2.94i)3-s + (1.70 + 5.24i)4-s + (−10.1 − 13.9i)5-s + (6.38 + 18.0i)6-s + (−16.0 + 5.21i)7-s + (2.82 − 8.70i)8-s + (9.69 + 25.1i)9-s − 63.2i·10-s + (36.4 + 0.331i)11-s + (−8.11 + 27.4i)12-s + (−34.3 + 47.2i)13-s + (−59.0 − 19.1i)14-s + (−2.38 − 89.4i)15-s + (62.8 − 45.6i)16-s + (−1.44 + 1.05i)17-s + ⋯ |
L(s) = 1 | + (1.05 + 0.763i)2-s + (0.824 + 0.566i)3-s + (0.212 + 0.655i)4-s + (−0.905 − 1.24i)5-s + (0.434 + 1.22i)6-s + (−0.867 + 0.281i)7-s + (0.124 − 0.384i)8-s + (0.359 + 0.933i)9-s − 2.00i·10-s + (0.999 + 0.00908i)11-s + (−0.195 + 0.660i)12-s + (−0.732 + 1.00i)13-s + (−1.12 − 0.366i)14-s + (−0.0410 − 1.53i)15-s + (0.982 − 0.713i)16-s + (−0.0206 + 0.0149i)17-s + ⋯ |
Λ(s)=(=(33s/2ΓC(s)L(s)(0.629−0.777i)Λ(4−s)
Λ(s)=(=(33s/2ΓC(s+3/2)L(s)(0.629−0.777i)Λ(1−s)
Degree: |
2 |
Conductor: |
33
= 3⋅11
|
Sign: |
0.629−0.777i
|
Analytic conductor: |
1.94706 |
Root analytic conductor: |
1.39537 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ33(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 33, ( :3/2), 0.629−0.777i)
|
Particular Values
L(2) |
≈ |
1.89599+0.904804i |
L(21) |
≈ |
1.89599+0.904804i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−4.28−2.94i)T |
| 11 | 1+(−36.4−0.331i)T |
good | 2 | 1+(−2.97−2.16i)T+(2.47+7.60i)T2 |
| 5 | 1+(10.1+13.9i)T+(−38.6+118.i)T2 |
| 7 | 1+(16.0−5.21i)T+(277.−201.i)T2 |
| 13 | 1+(34.3−47.2i)T+(−678.−2.08e3i)T2 |
| 17 | 1+(1.44−1.05i)T+(1.51e3−4.67e3i)T2 |
| 19 | 1+(22.6+7.35i)T+(5.54e3+4.03e3i)T2 |
| 23 | 1+75.4iT−1.21e4T2 |
| 29 | 1+(−17.7−54.5i)T+(−1.97e4+1.43e4i)T2 |
| 31 | 1+(−127.−92.9i)T+(9.20e3+2.83e4i)T2 |
| 37 | 1+(71.2+219.i)T+(−4.09e4+2.97e4i)T2 |
| 41 | 1+(50.3−154.i)T+(−5.57e4−4.05e4i)T2 |
| 43 | 1+128.iT−7.95e4T2 |
| 47 | 1+(404.+131.i)T+(8.39e4+6.10e4i)T2 |
| 53 | 1+(−357.+492.i)T+(−4.60e4−1.41e5i)T2 |
| 59 | 1+(13.0−4.23i)T+(1.66e5−1.20e5i)T2 |
| 61 | 1+(−455.−626.i)T+(−7.01e4+2.15e5i)T2 |
| 67 | 1−199.T+3.00e5T2 |
| 71 | 1+(304.+418.i)T+(−1.10e5+3.40e5i)T2 |
| 73 | 1+(−930.+302.i)T+(3.14e5−2.28e5i)T2 |
| 79 | 1+(486.−669.i)T+(−1.52e5−4.68e5i)T2 |
| 83 | 1+(−443.+322.i)T+(1.76e5−5.43e5i)T2 |
| 89 | 1−399.iT−7.04e5T2 |
| 97 | 1+(717.+521.i)T+(2.82e5+8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.25895713414696321338377447398, −15.16056162069925470181916248203, −14.22705353975509790874966914224, −12.97943748555179547140958435321, −12.04654349153605282356401351730, −9.658669707271825406117471326026, −8.571565176201064749376012668417, −6.86919074240482039174424965310, −4.83902511651706330803983162769, −3.84892063279643382285790673381,
2.88869007775586541087724832811, 3.80520027502689347425150235771, 6.62021025151045956301235593227, 7.919045274774202063652683982059, 10.00619966012322696544410093775, 11.50571316827350810384735983053, 12.47353558695288736790390084791, 13.59011122868679582422998216743, 14.61522932598361066920579183424, 15.35955925284234418091993071736