Properties

Label 2-33-33.29-c3-0-4
Degree $2$
Conductor $33$
Sign $0.629 - 0.777i$
Analytic cond. $1.94706$
Root an. cond. $1.39537$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.97 + 2.16i)2-s + (4.28 + 2.94i)3-s + (1.70 + 5.24i)4-s + (−10.1 − 13.9i)5-s + (6.38 + 18.0i)6-s + (−16.0 + 5.21i)7-s + (2.82 − 8.70i)8-s + (9.69 + 25.1i)9-s − 63.2i·10-s + (36.4 + 0.331i)11-s + (−8.11 + 27.4i)12-s + (−34.3 + 47.2i)13-s + (−59.0 − 19.1i)14-s + (−2.38 − 89.4i)15-s + (62.8 − 45.6i)16-s + (−1.44 + 1.05i)17-s + ⋯
L(s)  = 1  + (1.05 + 0.763i)2-s + (0.824 + 0.566i)3-s + (0.212 + 0.655i)4-s + (−0.905 − 1.24i)5-s + (0.434 + 1.22i)6-s + (−0.867 + 0.281i)7-s + (0.124 − 0.384i)8-s + (0.359 + 0.933i)9-s − 2.00i·10-s + (0.999 + 0.00908i)11-s + (−0.195 + 0.660i)12-s + (−0.732 + 1.00i)13-s + (−1.12 − 0.366i)14-s + (−0.0410 − 1.53i)15-s + (0.982 − 0.713i)16-s + (−0.0206 + 0.0149i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.629 - 0.777i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.629 - 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $0.629 - 0.777i$
Analytic conductor: \(1.94706\)
Root analytic conductor: \(1.39537\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (29, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :3/2),\ 0.629 - 0.777i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.89599 + 0.904804i\)
\(L(\frac12)\) \(\approx\) \(1.89599 + 0.904804i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-4.28 - 2.94i)T \)
11 \( 1 + (-36.4 - 0.331i)T \)
good2 \( 1 + (-2.97 - 2.16i)T + (2.47 + 7.60i)T^{2} \)
5 \( 1 + (10.1 + 13.9i)T + (-38.6 + 118. i)T^{2} \)
7 \( 1 + (16.0 - 5.21i)T + (277. - 201. i)T^{2} \)
13 \( 1 + (34.3 - 47.2i)T + (-678. - 2.08e3i)T^{2} \)
17 \( 1 + (1.44 - 1.05i)T + (1.51e3 - 4.67e3i)T^{2} \)
19 \( 1 + (22.6 + 7.35i)T + (5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + 75.4iT - 1.21e4T^{2} \)
29 \( 1 + (-17.7 - 54.5i)T + (-1.97e4 + 1.43e4i)T^{2} \)
31 \( 1 + (-127. - 92.9i)T + (9.20e3 + 2.83e4i)T^{2} \)
37 \( 1 + (71.2 + 219. i)T + (-4.09e4 + 2.97e4i)T^{2} \)
41 \( 1 + (50.3 - 154. i)T + (-5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + 128. iT - 7.95e4T^{2} \)
47 \( 1 + (404. + 131. i)T + (8.39e4 + 6.10e4i)T^{2} \)
53 \( 1 + (-357. + 492. i)T + (-4.60e4 - 1.41e5i)T^{2} \)
59 \( 1 + (13.0 - 4.23i)T + (1.66e5 - 1.20e5i)T^{2} \)
61 \( 1 + (-455. - 626. i)T + (-7.01e4 + 2.15e5i)T^{2} \)
67 \( 1 - 199.T + 3.00e5T^{2} \)
71 \( 1 + (304. + 418. i)T + (-1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-930. + 302. i)T + (3.14e5 - 2.28e5i)T^{2} \)
79 \( 1 + (486. - 669. i)T + (-1.52e5 - 4.68e5i)T^{2} \)
83 \( 1 + (-443. + 322. i)T + (1.76e5 - 5.43e5i)T^{2} \)
89 \( 1 - 399. iT - 7.04e5T^{2} \)
97 \( 1 + (717. + 521. i)T + (2.82e5 + 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.25895713414696321338377447398, −15.16056162069925470181916248203, −14.22705353975509790874966914224, −12.97943748555179547140958435321, −12.04654349153605282356401351730, −9.658669707271825406117471326026, −8.571565176201064749376012668417, −6.86919074240482039174424965310, −4.83902511651706330803983162769, −3.84892063279643382285790673381, 2.88869007775586541087724832811, 3.80520027502689347425150235771, 6.62021025151045956301235593227, 7.919045274774202063652683982059, 10.00619966012322696544410093775, 11.50571316827350810384735983053, 12.47353558695288736790390084791, 13.59011122868679582422998216743, 14.61522932598361066920579183424, 15.35955925284234418091993071736

Graph of the $Z$-function along the critical line