L(s) = 1 | − 3-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)7-s + (1 + i)11-s + (0.707 − 0.707i)13-s + (−0.707 + 0.707i)15-s + i·17-s + (0.707 + 0.707i)21-s + 1.41i·23-s + 27-s + 1.41·29-s + (−1 − i)33-s − 1.00·35-s + (−0.707 − 0.707i)37-s + (−0.707 + 0.707i)39-s + ⋯ |
L(s) = 1 | − 3-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)7-s + (1 + i)11-s + (0.707 − 0.707i)13-s + (−0.707 + 0.707i)15-s + i·17-s + (0.707 + 0.707i)21-s + 1.41i·23-s + 27-s + 1.41·29-s + (−1 − i)33-s − 1.00·35-s + (−0.707 − 0.707i)37-s + (−0.707 + 0.707i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 + 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9872372045\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9872372045\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + T + T^{2} \) |
| 5 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 11 | \( 1 + (-1 - i)T + iT^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 - 1.41iT - T^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + (-1 + i)T - iT^{2} \) |
| 71 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.41T + T^{2} \) |
| 83 | \( 1 + (1 - i)T - iT^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (1 - i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.861702980989496412878057377392, −8.054274874884558530814316687679, −6.88791339298205043924876851959, −6.54797353259923222724864478329, −5.61994927179897205010427293936, −5.21978099986299939232585636297, −4.10589036630767346465375891242, −3.43724585778334133777786594958, −1.84555120008892771865255644502, −0.924966298934209022985765984865,
0.991848729997494632635025186410, 2.52894735991835085369705734373, 3.13049275423748141571399644721, 4.33137426971137953149802076577, 5.29032041527772161086589480255, 6.13750132679705129456962501401, 6.45117273500322342653135578035, 6.81383517736964235035544552705, 8.408549071885945895721114782041, 8.831626350219996984588761744164