Properties

Label 2-3328-1.1-c1-0-12
Degree $2$
Conductor $3328$
Sign $1$
Analytic cond. $26.5742$
Root an. cond. $5.15501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 3.46·5-s − 4.73·7-s + 9-s + 1.26·11-s − 13-s − 6.92·15-s − 1.46·17-s − 2.73·19-s − 9.46·21-s + 4·23-s + 6.99·25-s − 4·27-s − 2·29-s + 3.26·31-s + 2.53·33-s + 16.3·35-s + 4.92·37-s − 2·39-s + 4.92·41-s + 7.46·43-s − 3.46·45-s − 3.26·47-s + 15.3·49-s − 2.92·51-s + 10.9·53-s − 4.39·55-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.54·5-s − 1.78·7-s + 0.333·9-s + 0.382·11-s − 0.277·13-s − 1.78·15-s − 0.355·17-s − 0.626·19-s − 2.06·21-s + 0.834·23-s + 1.39·25-s − 0.769·27-s − 0.371·29-s + 0.586·31-s + 0.441·33-s + 2.77·35-s + 0.810·37-s − 0.320·39-s + 0.769·41-s + 1.13·43-s − 0.516·45-s − 0.476·47-s + 2.19·49-s − 0.410·51-s + 1.50·53-s − 0.592·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3328\)    =    \(2^{8} \cdot 13\)
Sign: $1$
Analytic conductor: \(26.5742\)
Root analytic conductor: \(5.15501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3328,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.187845093\)
\(L(\frac12)\) \(\approx\) \(1.187845093\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2T + 3T^{2} \)
5 \( 1 + 3.46T + 5T^{2} \)
7 \( 1 + 4.73T + 7T^{2} \)
11 \( 1 - 1.26T + 11T^{2} \)
17 \( 1 + 1.46T + 17T^{2} \)
19 \( 1 + 2.73T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 3.26T + 31T^{2} \)
37 \( 1 - 4.92T + 37T^{2} \)
41 \( 1 - 4.92T + 41T^{2} \)
43 \( 1 - 7.46T + 43T^{2} \)
47 \( 1 + 3.26T + 47T^{2} \)
53 \( 1 - 10.9T + 53T^{2} \)
59 \( 1 + 0.196T + 59T^{2} \)
61 \( 1 - 10.9T + 61T^{2} \)
67 \( 1 + 2.73T + 67T^{2} \)
71 \( 1 - 2.19T + 71T^{2} \)
73 \( 1 - 0.535T + 73T^{2} \)
79 \( 1 - 1.46T + 79T^{2} \)
83 \( 1 - 6.73T + 83T^{2} \)
89 \( 1 + 17.3T + 89T^{2} \)
97 \( 1 + 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.622076288579392155964461226193, −7.975975262870032889106454267237, −7.17236414352687234796768068874, −6.71240091680589272447303787065, −5.70495272670373130184862222283, −4.26181703856032238634869666773, −3.87633909156815732243980757314, −3.06324705379444144622456790442, −2.50955288530124832694397755115, −0.58137463746360388236987393310, 0.58137463746360388236987393310, 2.50955288530124832694397755115, 3.06324705379444144622456790442, 3.87633909156815732243980757314, 4.26181703856032238634869666773, 5.70495272670373130184862222283, 6.71240091680589272447303787065, 7.17236414352687234796768068874, 7.975975262870032889106454267237, 8.622076288579392155964461226193

Graph of the $Z$-function along the critical line