L(s) = 1 | + 2·3-s − 3.46·5-s − 4.73·7-s + 9-s + 1.26·11-s − 13-s − 6.92·15-s − 1.46·17-s − 2.73·19-s − 9.46·21-s + 4·23-s + 6.99·25-s − 4·27-s − 2·29-s + 3.26·31-s + 2.53·33-s + 16.3·35-s + 4.92·37-s − 2·39-s + 4.92·41-s + 7.46·43-s − 3.46·45-s − 3.26·47-s + 15.3·49-s − 2.92·51-s + 10.9·53-s − 4.39·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1.54·5-s − 1.78·7-s + 0.333·9-s + 0.382·11-s − 0.277·13-s − 1.78·15-s − 0.355·17-s − 0.626·19-s − 2.06·21-s + 0.834·23-s + 1.39·25-s − 0.769·27-s − 0.371·29-s + 0.586·31-s + 0.441·33-s + 2.77·35-s + 0.810·37-s − 0.320·39-s + 0.769·41-s + 1.13·43-s − 0.516·45-s − 0.476·47-s + 2.19·49-s − 0.410·51-s + 1.50·53-s − 0.592·55-s + ⋯ |
Λ(s)=(=(3328s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3328s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.187845093 |
L(21) |
≈ |
1.187845093 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+T |
good | 3 | 1−2T+3T2 |
| 5 | 1+3.46T+5T2 |
| 7 | 1+4.73T+7T2 |
| 11 | 1−1.26T+11T2 |
| 17 | 1+1.46T+17T2 |
| 19 | 1+2.73T+19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1−3.26T+31T2 |
| 37 | 1−4.92T+37T2 |
| 41 | 1−4.92T+41T2 |
| 43 | 1−7.46T+43T2 |
| 47 | 1+3.26T+47T2 |
| 53 | 1−10.9T+53T2 |
| 59 | 1+0.196T+59T2 |
| 61 | 1−10.9T+61T2 |
| 67 | 1+2.73T+67T2 |
| 71 | 1−2.19T+71T2 |
| 73 | 1−0.535T+73T2 |
| 79 | 1−1.46T+79T2 |
| 83 | 1−6.73T+83T2 |
| 89 | 1+17.3T+89T2 |
| 97 | 1+14.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.622076288579392155964461226193, −7.975975262870032889106454267237, −7.17236414352687234796768068874, −6.71240091680589272447303787065, −5.70495272670373130184862222283, −4.26181703856032238634869666773, −3.87633909156815732243980757314, −3.06324705379444144622456790442, −2.50955288530124832694397755115, −0.58137463746360388236987393310,
0.58137463746360388236987393310, 2.50955288530124832694397755115, 3.06324705379444144622456790442, 3.87633909156815732243980757314, 4.26181703856032238634869666773, 5.70495272670373130184862222283, 6.71240091680589272447303787065, 7.17236414352687234796768068874, 7.975975262870032889106454267237, 8.622076288579392155964461226193