Properties

Label 2-3328-1.1-c1-0-33
Degree $2$
Conductor $3328$
Sign $-1$
Analytic cond. $26.5742$
Root an. cond. $5.15501$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.41·3-s − 1.82·5-s − 4.41·7-s + 2.82·9-s + 0.828·11-s + 13-s + 4.41·15-s + 17-s + 5.65·19-s + 10.6·21-s − 8.82·23-s − 1.65·25-s + 0.414·27-s + 3.65·29-s − 3.65·31-s − 1.99·33-s + 8.07·35-s + 7·37-s − 2.41·39-s + 9.65·41-s + 8.41·43-s − 5.17·45-s − 0.757·47-s + 12.4·49-s − 2.41·51-s + 3.65·53-s − 1.51·55-s + ⋯
L(s)  = 1  − 1.39·3-s − 0.817·5-s − 1.66·7-s + 0.942·9-s + 0.249·11-s + 0.277·13-s + 1.13·15-s + 0.242·17-s + 1.29·19-s + 2.32·21-s − 1.84·23-s − 0.331·25-s + 0.0797·27-s + 0.679·29-s − 0.656·31-s − 0.348·33-s + 1.36·35-s + 1.15·37-s − 0.386·39-s + 1.50·41-s + 1.28·43-s − 0.770·45-s − 0.110·47-s + 1.78·49-s − 0.338·51-s + 0.502·53-s − 0.204·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3328\)    =    \(2^{8} \cdot 13\)
Sign: $-1$
Analytic conductor: \(26.5742\)
Root analytic conductor: \(5.15501\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3328,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + 2.41T + 3T^{2} \)
5 \( 1 + 1.82T + 5T^{2} \)
7 \( 1 + 4.41T + 7T^{2} \)
11 \( 1 - 0.828T + 11T^{2} \)
17 \( 1 - T + 17T^{2} \)
19 \( 1 - 5.65T + 19T^{2} \)
23 \( 1 + 8.82T + 23T^{2} \)
29 \( 1 - 3.65T + 29T^{2} \)
31 \( 1 + 3.65T + 31T^{2} \)
37 \( 1 - 7T + 37T^{2} \)
41 \( 1 - 9.65T + 41T^{2} \)
43 \( 1 - 8.41T + 43T^{2} \)
47 \( 1 + 0.757T + 47T^{2} \)
53 \( 1 - 3.65T + 53T^{2} \)
59 \( 1 + 8T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 8.82T + 67T^{2} \)
71 \( 1 - 11.7T + 71T^{2} \)
73 \( 1 - 1.65T + 73T^{2} \)
79 \( 1 - 16.1T + 79T^{2} \)
83 \( 1 + 12.1T + 83T^{2} \)
89 \( 1 - 13.6T + 89T^{2} \)
97 \( 1 + 7.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.011540489714437252887369605065, −7.42747020505888721274046177939, −6.53044212309080638282864886305, −6.02942365537880418262772487780, −5.48229891906894977538760235984, −4.25472697770093389878631817971, −3.72879543066855056519481824373, −2.71079920323213533383293408200, −0.937963099252342462967527625393, 0, 0.937963099252342462967527625393, 2.71079920323213533383293408200, 3.72879543066855056519481824373, 4.25472697770093389878631817971, 5.48229891906894977538760235984, 6.02942365537880418262772487780, 6.53044212309080638282864886305, 7.42747020505888721274046177939, 8.011540489714437252887369605065

Graph of the $Z$-function along the critical line