L(s) = 1 | − 2.41·3-s − 1.82·5-s − 4.41·7-s + 2.82·9-s + 0.828·11-s + 13-s + 4.41·15-s + 17-s + 5.65·19-s + 10.6·21-s − 8.82·23-s − 1.65·25-s + 0.414·27-s + 3.65·29-s − 3.65·31-s − 1.99·33-s + 8.07·35-s + 7·37-s − 2.41·39-s + 9.65·41-s + 8.41·43-s − 5.17·45-s − 0.757·47-s + 12.4·49-s − 2.41·51-s + 3.65·53-s − 1.51·55-s + ⋯ |
L(s) = 1 | − 1.39·3-s − 0.817·5-s − 1.66·7-s + 0.942·9-s + 0.249·11-s + 0.277·13-s + 1.13·15-s + 0.242·17-s + 1.29·19-s + 2.32·21-s − 1.84·23-s − 0.331·25-s + 0.0797·27-s + 0.679·29-s − 0.656·31-s − 0.348·33-s + 1.36·35-s + 1.15·37-s − 0.386·39-s + 1.50·41-s + 1.28·43-s − 0.770·45-s − 0.110·47-s + 1.78·49-s − 0.338·51-s + 0.502·53-s − 0.204·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3328 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + 2.41T + 3T^{2} \) |
| 5 | \( 1 + 1.82T + 5T^{2} \) |
| 7 | \( 1 + 4.41T + 7T^{2} \) |
| 11 | \( 1 - 0.828T + 11T^{2} \) |
| 17 | \( 1 - T + 17T^{2} \) |
| 19 | \( 1 - 5.65T + 19T^{2} \) |
| 23 | \( 1 + 8.82T + 23T^{2} \) |
| 29 | \( 1 - 3.65T + 29T^{2} \) |
| 31 | \( 1 + 3.65T + 31T^{2} \) |
| 37 | \( 1 - 7T + 37T^{2} \) |
| 41 | \( 1 - 9.65T + 41T^{2} \) |
| 43 | \( 1 - 8.41T + 43T^{2} \) |
| 47 | \( 1 + 0.757T + 47T^{2} \) |
| 53 | \( 1 - 3.65T + 53T^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 + 8.82T + 67T^{2} \) |
| 71 | \( 1 - 11.7T + 71T^{2} \) |
| 73 | \( 1 - 1.65T + 73T^{2} \) |
| 79 | \( 1 - 16.1T + 79T^{2} \) |
| 83 | \( 1 + 12.1T + 83T^{2} \) |
| 89 | \( 1 - 13.6T + 89T^{2} \) |
| 97 | \( 1 + 7.65T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.011540489714437252887369605065, −7.42747020505888721274046177939, −6.53044212309080638282864886305, −6.02942365537880418262772487780, −5.48229891906894977538760235984, −4.25472697770093389878631817971, −3.72879543066855056519481824373, −2.71079920323213533383293408200, −0.937963099252342462967527625393, 0,
0.937963099252342462967527625393, 2.71079920323213533383293408200, 3.72879543066855056519481824373, 4.25472697770093389878631817971, 5.48229891906894977538760235984, 6.02942365537880418262772487780, 6.53044212309080638282864886305, 7.42747020505888721274046177939, 8.011540489714437252887369605065