L(s) = 1 | + 2·9-s − 12·17-s + 2·25-s − 18·49-s − 56·73-s − 15·81-s + 40·89-s − 8·97-s − 56·113-s + 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯ |
L(s) = 1 | + 2/3·9-s − 2.91·17-s + 2/5·25-s − 2.57·49-s − 6.55·73-s − 5/3·81-s + 4.23·89-s − 0.812·97-s − 5.26·113-s + 4/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.153·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯ |
Λ(s)=(=((232⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((232⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
232⋅134
|
Sign: |
1
|
Analytic conductor: |
498702. |
Root analytic conductor: |
5.15501 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 232⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.755716741 |
L(21) |
≈ |
1.755716741 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | | 1 | |
| 13 | C2 | (1+T2)2 | |
good | 3 | C22 | (1−T2+p2T4)2 | 4.3.a_ac_a_t |
| 5 | C22 | (1−T2+p2T4)2 | 4.5.a_ac_a_bz |
| 7 | C22 | (1+9T2+p2T4)2 | 4.7.a_s_a_gx |
| 11 | C22 | (1−2T2+p2T4)2 | 4.11.a_ae_a_jm |
| 17 | C2 | (1+3T+pT2)4 | 4.17.m_es_bbs_fkl |
| 19 | C22 | (1−18T2+p2T4)2 | 4.19.a_abk_a_bog |
| 23 | C22 | (1−34T2+p2T4)2 | 4.23.a_acq_a_dhe |
| 29 | C2 | (1−4T+pT2)2(1+4T+pT2)2 | 4.29.a_dg_a_fco |
| 31 | C2 | (1+pT2)4 | 4.31.a_eu_a_inu |
| 37 | C22 | (1−65T2+p2T4)2 | 4.37.a_afa_a_khv |
| 41 | C2 | (1+pT2)4 | 4.41.a_gi_a_oxy |
| 43 | C22 | (1−41T2+p2T4)2 | 4.43.a_ade_a_hyx |
| 47 | C22 | (1+89T2+p2T4)2 | 4.47.a_gw_a_sgp |
| 53 | C2 | (1−14T+pT2)2(1+14T+pT2)2 | 4.53.a_agy_a_uhq |
| 59 | C22 | (1−98T2+p2T4)2 | 4.59.a_aho_a_yne |
| 61 | C2 | (1−pT2)4 | 4.61.a_ajk_a_bhas |
| 67 | C22 | (1+46T2+p2T4)2 | 4.67.a_do_a_qks |
| 71 | C22 | (1+97T2+p2T4)2 | 4.71.a_hm_a_bcvr |
| 73 | C2 | (1+14T+pT2)4 | 4.73.ce_cem_bijw_nuda |
| 79 | C22 | (1+78T2+p2T4)2 | 4.79.a_ga_a_bbmc |
| 83 | C22 | (1+154T2+p2T4)2 | 4.83.a_lw_a_cdmc |
| 89 | C2 | (1−10T+pT2)4 | 4.89.abo_bku_avsq_jjcg |
| 97 | C2 | (1+2T+pT2)4 | 4.97.i_pw_dmu_dmla |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.10746565822432930091051026768, −5.94253520243105416126131206293, −5.86379107399020928099026297478, −5.45387803173768776976184704064, −5.23116982894672747637051606040, −5.05303213584734202699689688518, −4.93670705825449601930891939898, −4.47870854996578677207664046055, −4.39125785254593678461574087875, −4.33468644254046648056491850628, −4.31850489629127107782029398352, −3.93073584593977016905232276533, −3.59811192331837045214888222113, −3.35588060359060981566985045467, −3.13000360775533887724957644628, −2.85817313257320118487583343621, −2.63571475388658294722741457533, −2.60814400776212100639895005951, −2.00428988594600100214551510481, −1.92462084059525295215857969172, −1.65138137018106984412920096306, −1.41432921684726186387629782177, −1.16725832193935022155067138059, −0.36781695494391838827899421765, −0.34352469053775353781739827941,
0.34352469053775353781739827941, 0.36781695494391838827899421765, 1.16725832193935022155067138059, 1.41432921684726186387629782177, 1.65138137018106984412920096306, 1.92462084059525295215857969172, 2.00428988594600100214551510481, 2.60814400776212100639895005951, 2.63571475388658294722741457533, 2.85817313257320118487583343621, 3.13000360775533887724957644628, 3.35588060359060981566985045467, 3.59811192331837045214888222113, 3.93073584593977016905232276533, 4.31850489629127107782029398352, 4.33468644254046648056491850628, 4.39125785254593678461574087875, 4.47870854996578677207664046055, 4.93670705825449601930891939898, 5.05303213584734202699689688518, 5.23116982894672747637051606040, 5.45387803173768776976184704064, 5.86379107399020928099026297478, 5.94253520243105416126131206293, 6.10746565822432930091051026768