L(s) = 1 | − 4·2-s + 10·4-s − 4·5-s + 4·7-s − 20·8-s + 16·10-s − 2·11-s − 3·13-s − 16·14-s + 35·16-s − 6·17-s + 3·19-s − 40·20-s + 8·22-s + 23-s + 10·25-s + 12·26-s + 40·28-s + 3·29-s + 3·31-s − 56·32-s + 24·34-s − 16·35-s − 4·37-s − 12·38-s + 80·40-s + 11·41-s + ⋯ |
L(s) = 1 | − 2.82·2-s + 5·4-s − 1.78·5-s + 1.51·7-s − 7.07·8-s + 5.05·10-s − 0.603·11-s − 0.832·13-s − 4.27·14-s + 35/4·16-s − 1.45·17-s + 0.688·19-s − 8.94·20-s + 1.70·22-s + 0.208·23-s + 2·25-s + 2.35·26-s + 7.55·28-s + 0.557·29-s + 0.538·31-s − 9.89·32-s + 4.11·34-s − 2.70·35-s − 0.657·37-s − 1.94·38-s + 12.6·40-s + 1.71·41-s + ⋯ |
Λ(s)=(=((24⋅38⋅54⋅374)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((24⋅38⋅54⋅374)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅38⋅54⋅374
|
Sign: |
1
|
Analytic conductor: |
499902. |
Root analytic conductor: |
5.15656 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅38⋅54⋅374, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8027854582 |
L(21) |
≈ |
0.8027854582 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)4 |
| 3 | | 1 |
| 5 | C1 | (1+T)4 |
| 37 | C1 | (1+T)4 |
good | 7 | C2≀S4 | 1−4T+15T2−44T3+96T4−44pT5+15p2T6−4p3T7+p4T8 |
| 11 | C2≀S4 | 1+2T+21T2−2T3+180T4−2pT5+21p2T6+2p3T7+p4T8 |
| 13 | C2≀S4 | 1+3T+14T2+73T3+354T4+73pT5+14p2T6+3p3T7+p4T8 |
| 17 | C2≀S4 | 1+6T+21T2−106T3−628T4−106pT5+21p2T6+6p3T7+p4T8 |
| 19 | C2≀S4 | 1−3T+26T2+37T3+186T4+37pT5+26p2T6−3p3T7+p4T8 |
| 23 | C2≀S4 | 1−T+16T2−5T3+958T4−5pT5+16p2T6−p3T7+p4T8 |
| 29 | C2≀S4 | 1−3T+34T2−57T3+1498T4−57pT5+34p2T6−3p3T7+p4T8 |
| 31 | C2≀S4 | 1−3T+86T2−9pT3+3442T4−9p2T5+86p2T6−3p3T7+p4T8 |
| 41 | C2≀S4 | 1−11T+168T2−1269T3+10334T4−1269pT5+168p2T6−11p3T7+p4T8 |
| 43 | C2≀S4 | 1+5T+96T2+517T3+5838T4+517pT5+96p2T6+5p3T7+p4T8 |
| 47 | C2≀S4 | 1+100T2+96T3+6262T4+96pT5+100p2T6+p4T8 |
| 53 | C2≀S4 | 1−22T+333T2−3254T3+27156T4−3254pT5+333p2T6−22p3T7+p4T8 |
| 59 | C2≀S4 | 1−8T+184T2−1096T3+14494T4−1096pT5+184p2T6−8p3T7+p4T8 |
| 61 | C2≀S4 | 1+5T+114T2+1111T3+7562T4+1111pT5+114p2T6+5p3T7+p4T8 |
| 67 | C2≀S4 | 1−6T+196T2−1174T3+17414T4−1174pT5+196p2T6−6p3T7+p4T8 |
| 71 | C2≀S4 | 1−18T+228T2−2298T3+22806T4−2298pT5+228p2T6−18p3T7+p4T8 |
| 73 | C2≀S4 | 1+5T+164T2−37T3+150pT4−37pT5+164p2T6+5p3T7+p4T8 |
| 79 | C2 | (1−4T+pT2)4 |
| 83 | C2≀S4 | 1−T+98T2−953T3+7834T4−953pT5+98p2T6−p3T7+p4T8 |
| 89 | C2≀S4 | 1−5T+122T2+621T3+2666T4+621pT5+122p2T6−5p3T7+p4T8 |
| 97 | C2≀S4 | 1−7T+152T2−1697T3+20014T4−1697pT5+152p2T6−7p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.29410643270562873963651650926, −6.10394814717993867156852841037, −5.71191289886424506655659181555, −5.45296833222026870746612625622, −5.41305324396109122843952938560, −5.07612099289584404579755987640, −4.88844365563967611561423287689, −4.75211608781613119658309285907, −4.50673064796484224749831469050, −4.24082500344435270043478823358, −4.02653694099066377421803355165, −3.72130373609701099854069605820, −3.63064946609788112375752761359, −3.15747580856256755274545797900, −2.97744751594233946518807911358, −2.90803013972299712642272519845, −2.43910836535835245514511280788, −2.22118524646101579447834432215, −2.11943939424732675601966374182, −1.76626570129276185306923217313, −1.70365065409675702201901427759, −0.882877305450239840656309263477, −0.833607448087418395372710935486, −0.69168407326170216395107205197, −0.34693216058570296742577216286,
0.34693216058570296742577216286, 0.69168407326170216395107205197, 0.833607448087418395372710935486, 0.882877305450239840656309263477, 1.70365065409675702201901427759, 1.76626570129276185306923217313, 2.11943939424732675601966374182, 2.22118524646101579447834432215, 2.43910836535835245514511280788, 2.90803013972299712642272519845, 2.97744751594233946518807911358, 3.15747580856256755274545797900, 3.63064946609788112375752761359, 3.72130373609701099854069605820, 4.02653694099066377421803355165, 4.24082500344435270043478823358, 4.50673064796484224749831469050, 4.75211608781613119658309285907, 4.88844365563967611561423287689, 5.07612099289584404579755987640, 5.41305324396109122843952938560, 5.45296833222026870746612625622, 5.71191289886424506655659181555, 6.10394814717993867156852841037, 6.29410643270562873963651650926