L(s) = 1 | + 2-s + 4-s + (0.718 − 2.11i)5-s − 2.74i·7-s + 8-s + (0.718 − 2.11i)10-s + 0.572·11-s + 3.04·13-s − 2.74i·14-s + 16-s + 4.95·17-s + 3.74i·19-s + (0.718 − 2.11i)20-s + 0.572·22-s + 2.98·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (0.321 − 0.946i)5-s − 1.03i·7-s + 0.353·8-s + (0.227 − 0.669i)10-s + 0.172·11-s + 0.843·13-s − 0.734i·14-s + 0.250·16-s + 1.20·17-s + 0.859i·19-s + (0.160 − 0.473i)20-s + 0.122·22-s + 0.621·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.289 + 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.289 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.490698550\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.490698550\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.718 + 2.11i)T \) |
| 37 | \( 1 + (4.94 - 3.53i)T \) |
good | 7 | \( 1 + 2.74iT - 7T^{2} \) |
| 11 | \( 1 - 0.572T + 11T^{2} \) |
| 13 | \( 1 - 3.04T + 13T^{2} \) |
| 17 | \( 1 - 4.95T + 17T^{2} \) |
| 19 | \( 1 - 3.74iT - 19T^{2} \) |
| 23 | \( 1 - 2.98T + 23T^{2} \) |
| 29 | \( 1 + 7.36iT - 29T^{2} \) |
| 31 | \( 1 - 1.12iT - 31T^{2} \) |
| 41 | \( 1 - 11.7T + 41T^{2} \) |
| 43 | \( 1 + 6.91T + 43T^{2} \) |
| 47 | \( 1 - 0.776iT - 47T^{2} \) |
| 53 | \( 1 - 3.55iT - 53T^{2} \) |
| 59 | \( 1 - 9.27iT - 59T^{2} \) |
| 61 | \( 1 + 11.2iT - 61T^{2} \) |
| 67 | \( 1 + 9.09iT - 67T^{2} \) |
| 71 | \( 1 + 6.26T + 71T^{2} \) |
| 73 | \( 1 - 7.83iT - 73T^{2} \) |
| 79 | \( 1 + 0.716iT - 79T^{2} \) |
| 83 | \( 1 + 2.01iT - 83T^{2} \) |
| 89 | \( 1 + 8.33iT - 89T^{2} \) |
| 97 | \( 1 + 15.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.264859269833452303237608298946, −7.79505286448097511747368039942, −6.89070892309519478572400895144, −5.99306611675195852211481026316, −5.49762924202322667823512048436, −4.48602745611107249496946778235, −3.95474764196877050545223900457, −3.09339134936924640505409214511, −1.66070410974902824224260270431, −0.907453490577889856936793002738,
1.42378023479272144170398235949, 2.55222070844939916695117796997, 3.15438840133752145800687142508, 3.96665349263200238679574964801, 5.27034767839467550612296109756, 5.60654111987243308876808260225, 6.48899777834118945841817242780, 7.04313529455665697439542784816, 7.910044111171461922715788720045, 8.866027324939333866094000071603