L(s) = 1 | + 2-s + 4-s + (0.718 − 2.11i)5-s − 2.74i·7-s + 8-s + (0.718 − 2.11i)10-s + 0.572·11-s + 3.04·13-s − 2.74i·14-s + 16-s + 4.95·17-s + 3.74i·19-s + (0.718 − 2.11i)20-s + 0.572·22-s + 2.98·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (0.321 − 0.946i)5-s − 1.03i·7-s + 0.353·8-s + (0.227 − 0.669i)10-s + 0.172·11-s + 0.843·13-s − 0.734i·14-s + 0.250·16-s + 1.20·17-s + 0.859i·19-s + (0.160 − 0.473i)20-s + 0.122·22-s + 0.621·23-s + ⋯ |
Λ(s)=(=(3330s/2ΓC(s)L(s)(0.289+0.957i)Λ(2−s)
Λ(s)=(=(3330s/2ΓC(s+1/2)L(s)(0.289+0.957i)Λ(1−s)
Degree: |
2 |
Conductor: |
3330
= 2⋅32⋅5⋅37
|
Sign: |
0.289+0.957i
|
Analytic conductor: |
26.5901 |
Root analytic conductor: |
5.15656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3330(739,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3330, ( :1/2), 0.289+0.957i)
|
Particular Values
L(1) |
≈ |
3.490698550 |
L(21) |
≈ |
3.490698550 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1+(−0.718+2.11i)T |
| 37 | 1+(4.94−3.53i)T |
good | 7 | 1+2.74iT−7T2 |
| 11 | 1−0.572T+11T2 |
| 13 | 1−3.04T+13T2 |
| 17 | 1−4.95T+17T2 |
| 19 | 1−3.74iT−19T2 |
| 23 | 1−2.98T+23T2 |
| 29 | 1+7.36iT−29T2 |
| 31 | 1−1.12iT−31T2 |
| 41 | 1−11.7T+41T2 |
| 43 | 1+6.91T+43T2 |
| 47 | 1−0.776iT−47T2 |
| 53 | 1−3.55iT−53T2 |
| 59 | 1−9.27iT−59T2 |
| 61 | 1+11.2iT−61T2 |
| 67 | 1+9.09iT−67T2 |
| 71 | 1+6.26T+71T2 |
| 73 | 1−7.83iT−73T2 |
| 79 | 1+0.716iT−79T2 |
| 83 | 1+2.01iT−83T2 |
| 89 | 1+8.33iT−89T2 |
| 97 | 1+15.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.264859269833452303237608298946, −7.79505286448097511747368039942, −6.89070892309519478572400895144, −5.99306611675195852211481026316, −5.49762924202322667823512048436, −4.48602745611107249496946778235, −3.95474764196877050545223900457, −3.09339134936924640505409214511, −1.66070410974902824224260270431, −0.907453490577889856936793002738,
1.42378023479272144170398235949, 2.55222070844939916695117796997, 3.15438840133752145800687142508, 3.96665349263200238679574964801, 5.27034767839467550612296109756, 5.60654111987243308876808260225, 6.48899777834118945841817242780, 7.04313529455665697439542784816, 7.910044111171461922715788720045, 8.866027324939333866094000071603