L(s) = 1 | + 2-s + 4-s + (−1.32 − 1.79i)5-s + 1.87i·7-s + 8-s + (−1.32 − 1.79i)10-s + 1.51·11-s − 4.78·13-s + 1.87i·14-s + 16-s + 3.99·17-s − 4.68i·19-s + (−1.32 − 1.79i)20-s + 1.51·22-s + 6.51·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (−0.594 − 0.804i)5-s + 0.707i·7-s + 0.353·8-s + (−0.420 − 0.568i)10-s + 0.455·11-s − 1.32·13-s + 0.500i·14-s + 0.250·16-s + 0.968·17-s − 1.07i·19-s + (−0.297 − 0.402i)20-s + 0.322·22-s + 1.35·23-s + ⋯ |
Λ(s)=(=(3330s/2ΓC(s)L(s)(0.492+0.870i)Λ(2−s)
Λ(s)=(=(3330s/2ΓC(s+1/2)L(s)(0.492+0.870i)Λ(1−s)
Degree: |
2 |
Conductor: |
3330
= 2⋅32⋅5⋅37
|
Sign: |
0.492+0.870i
|
Analytic conductor: |
26.5901 |
Root analytic conductor: |
5.15656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3330(739,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3330, ( :1/2), 0.492+0.870i)
|
Particular Values
L(1) |
≈ |
2.444932590 |
L(21) |
≈ |
2.444932590 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1+(1.32+1.79i)T |
| 37 | 1+(6.03+0.734i)T |
good | 7 | 1−1.87iT−7T2 |
| 11 | 1−1.51T+11T2 |
| 13 | 1+4.78T+13T2 |
| 17 | 1−3.99T+17T2 |
| 19 | 1+4.68iT−19T2 |
| 23 | 1−6.51T+23T2 |
| 29 | 1−0.200iT−29T2 |
| 31 | 1+5.79iT−31T2 |
| 41 | 1+4.10T+41T2 |
| 43 | 1−10.9T+43T2 |
| 47 | 1+5.15iT−47T2 |
| 53 | 1−2.22iT−53T2 |
| 59 | 1+13.2iT−59T2 |
| 61 | 1+4.09iT−61T2 |
| 67 | 1−5.76iT−67T2 |
| 71 | 1−9.17T+71T2 |
| 73 | 1+14.2iT−73T2 |
| 79 | 1−5.95iT−79T2 |
| 83 | 1+9.42iT−83T2 |
| 89 | 1+5.47iT−89T2 |
| 97 | 1+2.03T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.547602993913687112303293048084, −7.54405817729893735446215015681, −7.14128021518322835524803436213, −6.08616880899787801744027366793, −5.10368744178850519395085407866, −4.93444687345582965377602285145, −3.86273068684241691271527418487, −2.99007416605756550884116485121, −2.03712547162275820686665793848, −0.64887995651492866404113936017,
1.14583191193794361564757914542, 2.52859904882223674554327971427, 3.34518976526533772017203946404, 3.98513984547055612941260506109, 4.84894413919474982354790519948, 5.66173945148372889137419942258, 6.64353501225479396494984560712, 7.27736565578626941990260509173, 7.60001823854311689640549253310, 8.616721513367551264788163184193