Properties

Label 2-3330-185.184-c1-0-32
Degree $2$
Conductor $3330$
Sign $0.492 - 0.870i$
Analytic cond. $26.5901$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + (−1.32 + 1.79i)5-s − 1.87i·7-s + 8-s + (−1.32 + 1.79i)10-s + 1.51·11-s − 4.78·13-s − 1.87i·14-s + 16-s + 3.99·17-s + 4.68i·19-s + (−1.32 + 1.79i)20-s + 1.51·22-s + 6.51·23-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + (−0.594 + 0.804i)5-s − 0.707i·7-s + 0.353·8-s + (−0.420 + 0.568i)10-s + 0.455·11-s − 1.32·13-s − 0.500i·14-s + 0.250·16-s + 0.968·17-s + 1.07i·19-s + (−0.297 + 0.402i)20-s + 0.322·22-s + 1.35·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.492 - 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.492 - 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $0.492 - 0.870i$
Analytic conductor: \(26.5901\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3330} (739, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3330,\ (\ :1/2),\ 0.492 - 0.870i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.444932590\)
\(L(\frac12)\) \(\approx\) \(2.444932590\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + (1.32 - 1.79i)T \)
37 \( 1 + (6.03 - 0.734i)T \)
good7 \( 1 + 1.87iT - 7T^{2} \)
11 \( 1 - 1.51T + 11T^{2} \)
13 \( 1 + 4.78T + 13T^{2} \)
17 \( 1 - 3.99T + 17T^{2} \)
19 \( 1 - 4.68iT - 19T^{2} \)
23 \( 1 - 6.51T + 23T^{2} \)
29 \( 1 + 0.200iT - 29T^{2} \)
31 \( 1 - 5.79iT - 31T^{2} \)
41 \( 1 + 4.10T + 41T^{2} \)
43 \( 1 - 10.9T + 43T^{2} \)
47 \( 1 - 5.15iT - 47T^{2} \)
53 \( 1 + 2.22iT - 53T^{2} \)
59 \( 1 - 13.2iT - 59T^{2} \)
61 \( 1 - 4.09iT - 61T^{2} \)
67 \( 1 + 5.76iT - 67T^{2} \)
71 \( 1 - 9.17T + 71T^{2} \)
73 \( 1 - 14.2iT - 73T^{2} \)
79 \( 1 + 5.95iT - 79T^{2} \)
83 \( 1 - 9.42iT - 83T^{2} \)
89 \( 1 - 5.47iT - 89T^{2} \)
97 \( 1 + 2.03T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.616721513367551264788163184193, −7.60001823854311689640549253310, −7.27736565578626941990260509173, −6.64353501225479396494984560712, −5.66173945148372889137419942258, −4.84894413919474982354790519948, −3.98513984547055612941260506109, −3.34518976526533772017203946404, −2.52859904882223674554327971427, −1.14583191193794361564757914542, 0.64887995651492866404113936017, 2.03712547162275820686665793848, 2.99007416605756550884116485121, 3.86273068684241691271527418487, 4.93444687345582965377602285145, 5.10368744178850519395085407866, 6.08616880899787801744027366793, 7.14128021518322835524803436213, 7.54405817729893735446215015681, 8.547602993913687112303293048084

Graph of the $Z$-function along the critical line