L(s) = 1 | + 2-s + 4-s + (0.0603 + 2.23i)5-s + 3.18i·7-s + 8-s + (0.0603 + 2.23i)10-s − 2.65·11-s − 0.269·13-s + 3.18i·14-s + 16-s − 1.00·17-s + 0.921i·19-s + (0.0603 + 2.23i)20-s − 2.65·22-s − 2.37·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (0.0269 + 0.999i)5-s + 1.20i·7-s + 0.353·8-s + (0.0190 + 0.706i)10-s − 0.800·11-s − 0.0747·13-s + 0.850i·14-s + 0.250·16-s − 0.244·17-s + 0.211i·19-s + (0.0134 + 0.499i)20-s − 0.565·22-s − 0.495·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.931 - 0.363i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.931 - 0.363i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.752585634\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.752585634\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.0603 - 2.23i)T \) |
| 37 | \( 1 + (2.36 - 5.60i)T \) |
good | 7 | \( 1 - 3.18iT - 7T^{2} \) |
| 11 | \( 1 + 2.65T + 11T^{2} \) |
| 13 | \( 1 + 0.269T + 13T^{2} \) |
| 17 | \( 1 + 1.00T + 17T^{2} \) |
| 19 | \( 1 - 0.921iT - 19T^{2} \) |
| 23 | \( 1 + 2.37T + 23T^{2} \) |
| 29 | \( 1 + 1.10iT - 29T^{2} \) |
| 31 | \( 1 - 3.57iT - 31T^{2} \) |
| 41 | \( 1 + 4.25T + 41T^{2} \) |
| 43 | \( 1 - 6.87T + 43T^{2} \) |
| 47 | \( 1 + 3.07iT - 47T^{2} \) |
| 53 | \( 1 + 3.55iT - 53T^{2} \) |
| 59 | \( 1 - 3.24iT - 59T^{2} \) |
| 61 | \( 1 - 2.85iT - 61T^{2} \) |
| 67 | \( 1 + 4.14iT - 67T^{2} \) |
| 71 | \( 1 + 10.9T + 71T^{2} \) |
| 73 | \( 1 - 2.97iT - 73T^{2} \) |
| 79 | \( 1 - 10.1iT - 79T^{2} \) |
| 83 | \( 1 + 9.43iT - 83T^{2} \) |
| 89 | \( 1 + 12.2iT - 89T^{2} \) |
| 97 | \( 1 + 10.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.842624507168926936543542706548, −8.131464087567906951932535303169, −7.32633677128432605191019093848, −6.58714594359080498394299381198, −5.84291539875525921327838183222, −5.32139061030078777012327788616, −4.33390608540939649599478824586, −3.27106651805509032103687670130, −2.65115407333676948440790619570, −1.88957589917520764692840080789,
0.37765910414989057177576011926, 1.57914160230325232875431158629, 2.69141659370417544808888379645, 3.88637344876218212370628368674, 4.34647963416137288459915084599, 5.17774629407921897059150087260, 5.82887873595039616908781008313, 6.81001516191562036344445248788, 7.57899750132538844646626509589, 8.076374640872143827083040812562