L(s) = 1 | + i·2-s − 4-s + i·5-s + 7-s − i·8-s − 10-s − 5·11-s + i·13-s + i·14-s + 16-s − 3i·17-s + i·19-s − i·20-s − 5i·22-s − 5i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.447i·5-s + 0.377·7-s − 0.353i·8-s − 0.316·10-s − 1.50·11-s + 0.277i·13-s + 0.267i·14-s + 0.250·16-s − 0.727i·17-s + 0.229i·19-s − 0.223i·20-s − 1.06i·22-s − 1.04i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.164i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 - 0.164i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.356337635\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.356337635\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 37 | \( 1 + (-6 + i)T \) |
good | 7 | \( 1 - T + 7T^{2} \) |
| 11 | \( 1 + 5T + 11T^{2} \) |
| 13 | \( 1 - iT - 13T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 - iT - 19T^{2} \) |
| 23 | \( 1 + 5iT - 23T^{2} \) |
| 29 | \( 1 + 8iT - 29T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 41 | \( 1 - 8T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 - 12T + 47T^{2} \) |
| 53 | \( 1 + 3T + 53T^{2} \) |
| 59 | \( 1 + 10iT - 59T^{2} \) |
| 61 | \( 1 + 2iT - 61T^{2} \) |
| 67 | \( 1 + 2T + 67T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 - 9T + 73T^{2} \) |
| 79 | \( 1 - 12iT - 79T^{2} \) |
| 83 | \( 1 - 15T + 83T^{2} \) |
| 89 | \( 1 - iT - 89T^{2} \) |
| 97 | \( 1 + 16iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.364672554672545536394830854336, −7.84210593465563758868825123247, −7.28894248506984663678851539113, −6.37394297264298744038576319345, −5.72512554712302053034666737638, −4.85958482448872533986596414630, −4.25090127148647929878864459534, −2.98078241499529770830956438319, −2.23771745466128998460607799347, −0.51777560622550167115141344598,
0.916219283107556203928735078368, 2.04391552724843100561174529793, 2.90266843032164941989041034959, 3.86998340534345196321746900518, 4.77537439400466608574764601604, 5.39880402855016171522091088185, 6.09858532968042604629183869045, 7.60557394179398900670847159036, 7.73002553865728711709980732007, 8.777185790020573194376333798208