L(s) = 1 | + i·2-s − 4-s + i·5-s + 7-s − i·8-s − 10-s − 5·11-s + i·13-s + i·14-s + 16-s − 3i·17-s + i·19-s − i·20-s − 5i·22-s − 5i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.447i·5-s + 0.377·7-s − 0.353i·8-s − 0.316·10-s − 1.50·11-s + 0.277i·13-s + 0.267i·14-s + 0.250·16-s − 0.727i·17-s + 0.229i·19-s − 0.223i·20-s − 1.06i·22-s − 1.04i·23-s + ⋯ |
Λ(s)=(=(3330s/2ΓC(s)L(s)(0.986−0.164i)Λ(2−s)
Λ(s)=(=(3330s/2ΓC(s+1/2)L(s)(0.986−0.164i)Λ(1−s)
Degree: |
2 |
Conductor: |
3330
= 2⋅32⋅5⋅37
|
Sign: |
0.986−0.164i
|
Analytic conductor: |
26.5901 |
Root analytic conductor: |
5.15656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3330(2071,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3330, ( :1/2), 0.986−0.164i)
|
Particular Values
L(1) |
≈ |
1.356337635 |
L(21) |
≈ |
1.356337635 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1−iT |
| 37 | 1+(−6+i)T |
good | 7 | 1−T+7T2 |
| 11 | 1+5T+11T2 |
| 13 | 1−iT−13T2 |
| 17 | 1+3iT−17T2 |
| 19 | 1−iT−19T2 |
| 23 | 1+5iT−23T2 |
| 29 | 1+8iT−29T2 |
| 31 | 1−4iT−31T2 |
| 41 | 1−8T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−12T+47T2 |
| 53 | 1+3T+53T2 |
| 59 | 1+10iT−59T2 |
| 61 | 1+2iT−61T2 |
| 67 | 1+2T+67T2 |
| 71 | 1+12T+71T2 |
| 73 | 1−9T+73T2 |
| 79 | 1−12iT−79T2 |
| 83 | 1−15T+83T2 |
| 89 | 1−iT−89T2 |
| 97 | 1+16iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.364672554672545536394830854336, −7.84210593465563758868825123247, −7.28894248506984663678851539113, −6.37394297264298744038576319345, −5.72512554712302053034666737638, −4.85958482448872533986596414630, −4.25090127148647929878864459534, −2.98078241499529770830956438319, −2.23771745466128998460607799347, −0.51777560622550167115141344598,
0.916219283107556203928735078368, 2.04391552724843100561174529793, 2.90266843032164941989041034959, 3.86998340534345196321746900518, 4.77537439400466608574764601604, 5.39880402855016171522091088185, 6.09858532968042604629183869045, 7.60557394179398900670847159036, 7.73002553865728711709980732007, 8.777185790020573194376333798208