Properties

Label 2-3330-37.36-c1-0-55
Degree $2$
Conductor $3330$
Sign $-0.164 + 0.986i$
Analytic cond. $26.5901$
Root an. cond. $5.15656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + i·5-s + 7-s i·8-s − 10-s − 3·11-s − 6i·13-s + i·14-s + 16-s + 3i·17-s + 6i·19-s i·20-s − 3i·22-s − 6i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 0.447i·5-s + 0.377·7-s − 0.353i·8-s − 0.316·10-s − 0.904·11-s − 1.66i·13-s + 0.267i·14-s + 0.250·16-s + 0.727i·17-s + 1.37i·19-s − 0.223i·20-s − 0.639i·22-s − 1.25i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.164 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.164 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-0.164 + 0.986i$
Analytic conductor: \(26.5901\)
Root analytic conductor: \(5.15656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3330} (2071, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3330,\ (\ :1/2),\ -0.164 + 0.986i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2778802160\)
\(L(\frac12)\) \(\approx\) \(0.2778802160\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 - iT \)
37 \( 1 + (-1 + 6i)T \)
good7 \( 1 - T + 7T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 + 6iT - 13T^{2} \)
17 \( 1 - 3iT - 17T^{2} \)
19 \( 1 - 6iT - 19T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
29 \( 1 - 9iT - 29T^{2} \)
31 \( 1 - 3iT - 31T^{2} \)
41 \( 1 + 9T + 41T^{2} \)
43 \( 1 + 9iT - 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 3T + 53T^{2} \)
59 \( 1 - 59T^{2} \)
61 \( 1 + 9iT - 61T^{2} \)
67 \( 1 + 14T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 12iT - 89T^{2} \)
97 \( 1 - 3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.256045665020811152954229247989, −7.75686600491650076195366328942, −7.00725728676128280281215264287, −6.09904064115191180052452910688, −5.46753985966985822598172047265, −4.84044807002322263231879041209, −3.65593859238846918569404562188, −2.97150232130048190712512345387, −1.66695384825412519553343323703, −0.083806048222460538678434630380, 1.34102026886197044130013945807, 2.28135096276193073031715815484, 3.13573136308209404159706203882, 4.42962014701178618038349445039, 4.67826242140415900847189877807, 5.61892550125665444279650634245, 6.61851589649924298723094933432, 7.49885702635880212026379367073, 8.173057741731193378673411281362, 9.029169250814739430084650571497

Graph of the $Z$-function along the critical line