L(s) = 1 | + i·2-s − 4-s + i·5-s + 7-s − i·8-s − 10-s − 3·11-s − 6i·13-s + i·14-s + 16-s + 3i·17-s + 6i·19-s − i·20-s − 3i·22-s − 6i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.447i·5-s + 0.377·7-s − 0.353i·8-s − 0.316·10-s − 0.904·11-s − 1.66i·13-s + 0.267i·14-s + 0.250·16-s + 0.727i·17-s + 1.37i·19-s − 0.223i·20-s − 0.639i·22-s − 1.25i·23-s + ⋯ |
Λ(s)=(=(3330s/2ΓC(s)L(s)(−0.164+0.986i)Λ(2−s)
Λ(s)=(=(3330s/2ΓC(s+1/2)L(s)(−0.164+0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
3330
= 2⋅32⋅5⋅37
|
Sign: |
−0.164+0.986i
|
Analytic conductor: |
26.5901 |
Root analytic conductor: |
5.15656 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3330(2071,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3330, ( :1/2), −0.164+0.986i)
|
Particular Values
L(1) |
≈ |
0.2778802160 |
L(21) |
≈ |
0.2778802160 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 5 | 1−iT |
| 37 | 1+(−1+6i)T |
good | 7 | 1−T+7T2 |
| 11 | 1+3T+11T2 |
| 13 | 1+6iT−13T2 |
| 17 | 1−3iT−17T2 |
| 19 | 1−6iT−19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1−9iT−29T2 |
| 31 | 1−3iT−31T2 |
| 41 | 1+9T+41T2 |
| 43 | 1+9iT−43T2 |
| 47 | 1+47T2 |
| 53 | 1+3T+53T2 |
| 59 | 1−59T2 |
| 61 | 1+9iT−61T2 |
| 67 | 1+14T+67T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+2T+73T2 |
| 79 | 1−79T2 |
| 83 | 1+83T2 |
| 89 | 1+12iT−89T2 |
| 97 | 1−3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.256045665020811152954229247989, −7.75686600491650076195366328942, −7.00725728676128280281215264287, −6.09904064115191180052452910688, −5.46753985966985822598172047265, −4.84044807002322263231879041209, −3.65593859238846918569404562188, −2.97150232130048190712512345387, −1.66695384825412519553343323703, −0.083806048222460538678434630380,
1.34102026886197044130013945807, 2.28135096276193073031715815484, 3.13573136308209404159706203882, 4.42962014701178618038349445039, 4.67826242140415900847189877807, 5.61892550125665444279650634245, 6.61851589649924298723094933432, 7.49885702635880212026379367073, 8.173057741731193378673411281362, 9.029169250814739430084650571497