L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.465 − 0.607i)5-s + (0.707 − 0.707i)8-s + (−0.965 − 0.258i)9-s + (0.465 + 0.607i)10-s + 2i·13-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (0.499 − 0.866i)18-s + (−0.707 + 0.292i)20-s + (0.107 + 0.400i)25-s + (−1.93 − 0.517i)26-s + (0.707 + 1.70i)29-s + (−0.965 + 0.258i)32-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.465 − 0.607i)5-s + (0.707 − 0.707i)8-s + (−0.965 − 0.258i)9-s + (0.465 + 0.607i)10-s + 2i·13-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (0.499 − 0.866i)18-s + (−0.707 + 0.292i)20-s + (0.107 + 0.400i)25-s + (−1.93 − 0.517i)26-s + (0.707 + 1.70i)29-s + (−0.965 + 0.258i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9857715230\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9857715230\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.258 + 0.965i)T \) |
good | 3 | \( 1 + (0.965 + 0.258i)T^{2} \) |
| 5 | \( 1 + (-0.465 + 0.607i)T + (-0.258 - 0.965i)T^{2} \) |
| 11 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 13 | \( 1 - 2iT - T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (0.965 - 0.258i)T^{2} \) |
| 29 | \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (0.965 + 0.258i)T^{2} \) |
| 37 | \( 1 + (-1.46 - 1.12i)T + (0.258 + 0.965i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-1.83 + 0.241i)T + (0.965 - 0.258i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.758 + 0.0999i)T + (0.965 + 0.258i)T^{2} \) |
| 79 | \( 1 + (0.965 - 0.258i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.292 - 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.919338377945904144486023755770, −8.468561440739759946931927091702, −7.27810519443825709291573970181, −6.79613532611118150881407779943, −6.03571057831192426949083087946, −5.22001975818756266733312897242, −4.67123004351753622853373932093, −3.70711713474621701676871875243, −2.33937338753010755157741205633, −1.09655978153054501608470272356,
0.789264978740373632525103578207, 2.44780871946282110045119261734, 2.68506171603975328910482062844, 3.71650527517744901867133805097, 4.66698802627260816674083152845, 5.78745067076040962232664430262, 6.04419649244672509166064563605, 7.47043962141140739613812643872, 8.192471943427604980503822379266, 8.513778919643372687266564169706