Properties

Label 2-3332-476.291-c0-0-1
Degree $2$
Conductor $3332$
Sign $0.233 - 0.972i$
Analytic cond. $1.66288$
Root an. cond. $1.28952$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.465 − 0.607i)5-s + (0.707 − 0.707i)8-s + (−0.965 − 0.258i)9-s + (0.465 + 0.607i)10-s + 2i·13-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (0.499 − 0.866i)18-s + (−0.707 + 0.292i)20-s + (0.107 + 0.400i)25-s + (−1.93 − 0.517i)26-s + (0.707 + 1.70i)29-s + (−0.965 + 0.258i)32-s + ⋯
L(s)  = 1  + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.465 − 0.607i)5-s + (0.707 − 0.707i)8-s + (−0.965 − 0.258i)9-s + (0.465 + 0.607i)10-s + 2i·13-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (0.499 − 0.866i)18-s + (−0.707 + 0.292i)20-s + (0.107 + 0.400i)25-s + (−1.93 − 0.517i)26-s + (0.707 + 1.70i)29-s + (−0.965 + 0.258i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $0.233 - 0.972i$
Analytic conductor: \(1.66288\)
Root analytic conductor: \(1.28952\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3332} (1243, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :0),\ 0.233 - 0.972i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9857715230\)
\(L(\frac12)\) \(\approx\) \(0.9857715230\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.258 - 0.965i)T \)
7 \( 1 \)
17 \( 1 + (0.258 + 0.965i)T \)
good3 \( 1 + (0.965 + 0.258i)T^{2} \)
5 \( 1 + (-0.465 + 0.607i)T + (-0.258 - 0.965i)T^{2} \)
11 \( 1 + (-0.258 + 0.965i)T^{2} \)
13 \( 1 - 2iT - T^{2} \)
19 \( 1 + (0.866 + 0.5i)T^{2} \)
23 \( 1 + (0.965 - 0.258i)T^{2} \)
29 \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \)
31 \( 1 + (0.965 + 0.258i)T^{2} \)
37 \( 1 + (-1.46 - 1.12i)T + (0.258 + 0.965i)T^{2} \)
41 \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \)
43 \( 1 + iT^{2} \)
47 \( 1 + (-0.5 + 0.866i)T^{2} \)
53 \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \)
59 \( 1 + (0.866 - 0.5i)T^{2} \)
61 \( 1 + (-1.83 + 0.241i)T + (0.965 - 0.258i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T^{2} \)
71 \( 1 + (-0.707 + 0.707i)T^{2} \)
73 \( 1 + (0.758 + 0.0999i)T + (0.965 + 0.258i)T^{2} \)
79 \( 1 + (0.965 - 0.258i)T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 + (0.5 - 0.866i)T^{2} \)
97 \( 1 + (-0.292 - 0.707i)T + (-0.707 + 0.707i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.919338377945904144486023755770, −8.468561440739759946931927091702, −7.27810519443825709291573970181, −6.79613532611118150881407779943, −6.03571057831192426949083087946, −5.22001975818756266733312897242, −4.67123004351753622853373932093, −3.70711713474621701676871875243, −2.33937338753010755157741205633, −1.09655978153054501608470272356, 0.789264978740373632525103578207, 2.44780871946282110045119261734, 2.68506171603975328910482062844, 3.71650527517744901867133805097, 4.66698802627260816674083152845, 5.78745067076040962232664430262, 6.04419649244672509166064563605, 7.47043962141140739613812643872, 8.192471943427604980503822379266, 8.513778919643372687266564169706

Graph of the $Z$-function along the critical line