L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.465 − 0.607i)5-s + (0.707 − 0.707i)8-s + (−0.965 − 0.258i)9-s + (0.465 + 0.607i)10-s + 2i·13-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (0.499 − 0.866i)18-s + (−0.707 + 0.292i)20-s + (0.107 + 0.400i)25-s + (−1.93 − 0.517i)26-s + (0.707 + 1.70i)29-s + (−0.965 + 0.258i)32-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (0.465 − 0.607i)5-s + (0.707 − 0.707i)8-s + (−0.965 − 0.258i)9-s + (0.465 + 0.607i)10-s + 2i·13-s + (0.500 + 0.866i)16-s + (−0.258 − 0.965i)17-s + (0.499 − 0.866i)18-s + (−0.707 + 0.292i)20-s + (0.107 + 0.400i)25-s + (−1.93 − 0.517i)26-s + (0.707 + 1.70i)29-s + (−0.965 + 0.258i)32-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.233−0.972i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.233−0.972i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.233−0.972i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(1243,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.233−0.972i)
|
Particular Values
L(21) |
≈ |
0.9857715230 |
L(21) |
≈ |
0.9857715230 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258−0.965i)T |
| 7 | 1 |
| 17 | 1+(0.258+0.965i)T |
good | 3 | 1+(0.965+0.258i)T2 |
| 5 | 1+(−0.465+0.607i)T+(−0.258−0.965i)T2 |
| 11 | 1+(−0.258+0.965i)T2 |
| 13 | 1−2iT−T2 |
| 19 | 1+(0.866+0.5i)T2 |
| 23 | 1+(0.965−0.258i)T2 |
| 29 | 1+(−0.707−1.70i)T+(−0.707+0.707i)T2 |
| 31 | 1+(0.965+0.258i)T2 |
| 37 | 1+(−1.46−1.12i)T+(0.258+0.965i)T2 |
| 41 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 59 | 1+(0.866−0.5i)T2 |
| 61 | 1+(−1.83+0.241i)T+(0.965−0.258i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(−0.707+0.707i)T2 |
| 73 | 1+(0.758+0.0999i)T+(0.965+0.258i)T2 |
| 79 | 1+(0.965−0.258i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.292−0.707i)T+(−0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.919338377945904144486023755770, −8.468561440739759946931927091702, −7.27810519443825709291573970181, −6.79613532611118150881407779943, −6.03571057831192426949083087946, −5.22001975818756266733312897242, −4.67123004351753622853373932093, −3.70711713474621701676871875243, −2.33937338753010755157741205633, −1.09655978153054501608470272356,
0.789264978740373632525103578207, 2.44780871946282110045119261734, 2.68506171603975328910482062844, 3.71650527517744901867133805097, 4.66698802627260816674083152845, 5.78745067076040962232664430262, 6.04419649244672509166064563605, 7.47043962141140739613812643872, 8.192471943427604980503822379266, 8.513778919643372687266564169706