L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.758 + 0.0999i)5-s + (0.707 + 0.707i)8-s + (0.258 − 0.965i)9-s + (−0.758 − 0.0999i)10-s − 2i·13-s + (0.500 + 0.866i)16-s + (0.965 − 0.258i)17-s + (0.499 − 0.866i)18-s + (−0.707 − 0.292i)20-s + (−0.400 + 0.107i)25-s + (0.517 − 1.93i)26-s + (0.707 − 1.70i)29-s + (0.258 + 0.965i)32-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.758 + 0.0999i)5-s + (0.707 + 0.707i)8-s + (0.258 − 0.965i)9-s + (−0.758 − 0.0999i)10-s − 2i·13-s + (0.500 + 0.866i)16-s + (0.965 − 0.258i)17-s + (0.499 − 0.866i)18-s + (−0.707 − 0.292i)20-s + (−0.400 + 0.107i)25-s + (0.517 − 1.93i)26-s + (0.707 − 1.70i)29-s + (0.258 + 0.965i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.159351398\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.159351398\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.965 + 0.258i)T \) |
good | 3 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 5 | \( 1 + (0.758 - 0.0999i)T + (0.965 - 0.258i)T^{2} \) |
| 11 | \( 1 + (0.965 + 0.258i)T^{2} \) |
| 13 | \( 1 + 2iT - T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.258 - 0.965i)T^{2} \) |
| 29 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 37 | \( 1 + (-0.241 - 1.83i)T + (-0.965 + 0.258i)T^{2} \) |
| 41 | \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (1.12 - 1.46i)T + (-0.258 - 0.965i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.465 - 0.607i)T + (-0.258 + 0.965i)T^{2} \) |
| 79 | \( 1 + (-0.258 - 0.965i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.296338926915897265031181400278, −7.972728831318144968301114443732, −7.33536404702883153314583440712, −6.33601972275482410971678787166, −5.84688512575265743694388643770, −4.91999534864528773051790066927, −4.11231490799299280002807728559, −3.27012524113220729940719904255, −2.81929553358394672626968431942, −1.05036628784670315363344964580,
1.51601818799201995453862550902, 2.33148123389208182931169255910, 3.54622319367956861352127656597, 4.17605824494261548442777343022, 4.82196630763423510199821965572, 5.63791718991454322497122525005, 6.55556229380696330112643496625, 7.33786990202874253531838727636, 7.74732088415036399044420867513, 8.879790457166942494605430963277