L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.758 + 0.0999i)5-s + (0.707 + 0.707i)8-s + (0.258 − 0.965i)9-s + (−0.758 − 0.0999i)10-s − 2i·13-s + (0.500 + 0.866i)16-s + (0.965 − 0.258i)17-s + (0.499 − 0.866i)18-s + (−0.707 − 0.292i)20-s + (−0.400 + 0.107i)25-s + (0.517 − 1.93i)26-s + (0.707 − 1.70i)29-s + (0.258 + 0.965i)32-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.758 + 0.0999i)5-s + (0.707 + 0.707i)8-s + (0.258 − 0.965i)9-s + (−0.758 − 0.0999i)10-s − 2i·13-s + (0.500 + 0.866i)16-s + (0.965 − 0.258i)17-s + (0.499 − 0.866i)18-s + (−0.707 − 0.292i)20-s + (−0.400 + 0.107i)25-s + (0.517 − 1.93i)26-s + (0.707 − 1.70i)29-s + (0.258 + 0.965i)32-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.989+0.142i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.989+0.142i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.989+0.142i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(655,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.989+0.142i)
|
Particular Values
L(21) |
≈ |
2.159351398 |
L(21) |
≈ |
2.159351398 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965−0.258i)T |
| 7 | 1 |
| 17 | 1+(−0.965+0.258i)T |
good | 3 | 1+(−0.258+0.965i)T2 |
| 5 | 1+(0.758−0.0999i)T+(0.965−0.258i)T2 |
| 11 | 1+(0.965+0.258i)T2 |
| 13 | 1+2iT−T2 |
| 19 | 1+(−0.866−0.5i)T2 |
| 23 | 1+(−0.258−0.965i)T2 |
| 29 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
| 31 | 1+(−0.258+0.965i)T2 |
| 37 | 1+(−0.241−1.83i)T+(−0.965+0.258i)T2 |
| 41 | 1+(−0.707−1.70i)T+(−0.707+0.707i)T2 |
| 43 | 1−iT2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 59 | 1+(−0.866+0.5i)T2 |
| 61 | 1+(1.12−1.46i)T+(−0.258−0.965i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(−0.707−0.707i)T2 |
| 73 | 1+(−0.465−0.607i)T+(−0.258+0.965i)T2 |
| 79 | 1+(−0.258−0.965i)T2 |
| 83 | 1+iT2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.292+0.707i)T+(−0.707−0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.296338926915897265031181400278, −7.972728831318144968301114443732, −7.33536404702883153314583440712, −6.33601972275482410971678787166, −5.84688512575265743694388643770, −4.91999534864528773051790066927, −4.11231490799299280002807728559, −3.27012524113220729940719904255, −2.81929553358394672626968431942, −1.05036628784670315363344964580,
1.51601818799201995453862550902, 2.33148123389208182931169255910, 3.54622319367956861352127656597, 4.17605824494261548442777343022, 4.82196630763423510199821965572, 5.63791718991454322497122525005, 6.55556229380696330112643496625, 7.33786990202874253531838727636, 7.74732088415036399044420867513, 8.879790457166942494605430963277