Properties

Label 2-3332-476.151-c0-0-1
Degree $2$
Conductor $3332$
Sign $0.867 - 0.497i$
Analytic cond. $1.66288$
Root an. cond. $1.28952$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.607 − 0.465i)5-s + (0.707 − 0.707i)8-s + (0.965 + 0.258i)9-s + (0.607 − 0.465i)10-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)17-s + (−0.499 + 0.866i)18-s + (0.292 + 0.707i)20-s + (−0.107 − 0.400i)25-s + (0.707 − 0.292i)29-s + (−0.965 + 0.258i)32-s i·34-s + (−0.707 − 0.707i)36-s + (0.465 − 0.607i)37-s + ⋯
L(s)  = 1  + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.607 − 0.465i)5-s + (0.707 − 0.707i)8-s + (0.965 + 0.258i)9-s + (0.607 − 0.465i)10-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)17-s + (−0.499 + 0.866i)18-s + (0.292 + 0.707i)20-s + (−0.107 − 0.400i)25-s + (0.707 − 0.292i)29-s + (−0.965 + 0.258i)32-s i·34-s + (−0.707 − 0.707i)36-s + (0.465 − 0.607i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $0.867 - 0.497i$
Analytic conductor: \(1.66288\)
Root analytic conductor: \(1.28952\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3332} (3007, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :0),\ 0.867 - 0.497i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9251418608\)
\(L(\frac12)\) \(\approx\) \(0.9251418608\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.258 - 0.965i)T \)
7 \( 1 \)
17 \( 1 + (0.965 - 0.258i)T \)
good3 \( 1 + (-0.965 - 0.258i)T^{2} \)
5 \( 1 + (0.607 + 0.465i)T + (0.258 + 0.965i)T^{2} \)
11 \( 1 + (0.258 - 0.965i)T^{2} \)
13 \( 1 - T^{2} \)
19 \( 1 + (0.866 + 0.5i)T^{2} \)
23 \( 1 + (-0.965 + 0.258i)T^{2} \)
29 \( 1 + (-0.707 + 0.292i)T + (0.707 - 0.707i)T^{2} \)
31 \( 1 + (-0.965 - 0.258i)T^{2} \)
37 \( 1 + (-0.465 + 0.607i)T + (-0.258 - 0.965i)T^{2} \)
41 \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \)
43 \( 1 + iT^{2} \)
47 \( 1 + (-0.5 + 0.866i)T^{2} \)
53 \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \)
59 \( 1 + (0.866 - 0.5i)T^{2} \)
61 \( 1 + (0.241 + 1.83i)T + (-0.965 + 0.258i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T^{2} \)
71 \( 1 + (0.707 - 0.707i)T^{2} \)
73 \( 1 + (-0.0999 + 0.758i)T + (-0.965 - 0.258i)T^{2} \)
79 \( 1 + (-0.965 + 0.258i)T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \)
97 \( 1 + (-0.707 + 0.292i)T + (0.707 - 0.707i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.766593190917687965545589207440, −7.941966004847537077871514734704, −7.55931249176934566100841979979, −6.64750102636030109076526140515, −6.07612625835671437958698781781, −4.93829270955313866707210392416, −4.44167960679217612244655058665, −3.77691456065238663951292905625, −2.15957980678283354149844771387, −0.815938864956759250654776948299, 1.01655720113855350479401227133, 2.24138134743078567518116854280, 3.10523301201736614946997199841, 4.08114653613159477997623634677, 4.45522444175271612287460895602, 5.58388714063523793707826081874, 6.77899092865373241695935835514, 7.34098011540527379120250595679, 8.067311334129004883022851940923, 8.964139679776065585923844317789

Graph of the $Z$-function along the critical line