L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.607 − 0.465i)5-s + (0.707 − 0.707i)8-s + (0.965 + 0.258i)9-s + (0.607 − 0.465i)10-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)17-s + (−0.499 + 0.866i)18-s + (0.292 + 0.707i)20-s + (−0.107 − 0.400i)25-s + (0.707 − 0.292i)29-s + (−0.965 + 0.258i)32-s − i·34-s + (−0.707 − 0.707i)36-s + (0.465 − 0.607i)37-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.607 − 0.465i)5-s + (0.707 − 0.707i)8-s + (0.965 + 0.258i)9-s + (0.607 − 0.465i)10-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)17-s + (−0.499 + 0.866i)18-s + (0.292 + 0.707i)20-s + (−0.107 − 0.400i)25-s + (0.707 − 0.292i)29-s + (−0.965 + 0.258i)32-s − i·34-s + (−0.707 − 0.707i)36-s + (0.465 − 0.607i)37-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.867−0.497i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.867−0.497i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.867−0.497i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(3007,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.867−0.497i)
|
Particular Values
L(21) |
≈ |
0.9251418608 |
L(21) |
≈ |
0.9251418608 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258−0.965i)T |
| 7 | 1 |
| 17 | 1+(0.965−0.258i)T |
good | 3 | 1+(−0.965−0.258i)T2 |
| 5 | 1+(0.607+0.465i)T+(0.258+0.965i)T2 |
| 11 | 1+(0.258−0.965i)T2 |
| 13 | 1−T2 |
| 19 | 1+(0.866+0.5i)T2 |
| 23 | 1+(−0.965+0.258i)T2 |
| 29 | 1+(−0.707+0.292i)T+(0.707−0.707i)T2 |
| 31 | 1+(−0.965−0.258i)T2 |
| 37 | 1+(−0.465+0.607i)T+(−0.258−0.965i)T2 |
| 41 | 1+(−1.70−0.707i)T+(0.707+0.707i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 59 | 1+(0.866−0.5i)T2 |
| 61 | 1+(0.241+1.83i)T+(−0.965+0.258i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(0.707−0.707i)T2 |
| 73 | 1+(−0.0999+0.758i)T+(−0.965−0.258i)T2 |
| 79 | 1+(−0.965+0.258i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 97 | 1+(−0.707+0.292i)T+(0.707−0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.766593190917687965545589207440, −7.941966004847537077871514734704, −7.55931249176934566100841979979, −6.64750102636030109076526140515, −6.07612625835671437958698781781, −4.93829270955313866707210392416, −4.44167960679217612244655058665, −3.77691456065238663951292905625, −2.15957980678283354149844771387, −0.815938864956759250654776948299,
1.01655720113855350479401227133, 2.24138134743078567518116854280, 3.10523301201736614946997199841, 4.08114653613159477997623634677, 4.45522444175271612287460895602, 5.58388714063523793707826081874, 6.77899092865373241695935835514, 7.34098011540527379120250595679, 8.067311334129004883022851940923, 8.964139679776065585923844317789