L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.607 − 0.465i)5-s + (0.707 − 0.707i)8-s + (0.965 + 0.258i)9-s + (0.607 − 0.465i)10-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)17-s + (−0.499 + 0.866i)18-s + (0.292 + 0.707i)20-s + (−0.107 − 0.400i)25-s + (0.707 − 0.292i)29-s + (−0.965 + 0.258i)32-s − i·34-s + (−0.707 − 0.707i)36-s + (0.465 − 0.607i)37-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.499i)4-s + (−0.607 − 0.465i)5-s + (0.707 − 0.707i)8-s + (0.965 + 0.258i)9-s + (0.607 − 0.465i)10-s + (0.500 + 0.866i)16-s + (−0.965 + 0.258i)17-s + (−0.499 + 0.866i)18-s + (0.292 + 0.707i)20-s + (−0.107 − 0.400i)25-s + (0.707 − 0.292i)29-s + (−0.965 + 0.258i)32-s − i·34-s + (−0.707 − 0.707i)36-s + (0.465 − 0.607i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9251418608\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9251418608\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.965 - 0.258i)T \) |
good | 3 | \( 1 + (-0.965 - 0.258i)T^{2} \) |
| 5 | \( 1 + (0.607 + 0.465i)T + (0.258 + 0.965i)T^{2} \) |
| 11 | \( 1 + (0.258 - 0.965i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.965 + 0.258i)T^{2} \) |
| 29 | \( 1 + (-0.707 + 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.965 - 0.258i)T^{2} \) |
| 37 | \( 1 + (-0.465 + 0.607i)T + (-0.258 - 0.965i)T^{2} \) |
| 41 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.241 + 1.83i)T + (-0.965 + 0.258i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.0999 + 0.758i)T + (-0.965 - 0.258i)T^{2} \) |
| 79 | \( 1 + (-0.965 + 0.258i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.707 + 0.292i)T + (0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.766593190917687965545589207440, −7.941966004847537077871514734704, −7.55931249176934566100841979979, −6.64750102636030109076526140515, −6.07612625835671437958698781781, −4.93829270955313866707210392416, −4.44167960679217612244655058665, −3.77691456065238663951292905625, −2.15957980678283354149844771387, −0.815938864956759250654776948299,
1.01655720113855350479401227133, 2.24138134743078567518116854280, 3.10523301201736614946997199841, 4.08114653613159477997623634677, 4.45522444175271612287460895602, 5.58388714063523793707826081874, 6.77899092865373241695935835514, 7.34098011540527379120250595679, 8.067311334129004883022851940923, 8.964139679776065585923844317789