L(s) = 1 | + (−0.608 + 0.793i)2-s + (−0.258 − 0.965i)4-s + (1.05 − 0.357i)5-s + (0.923 + 0.382i)8-s + (0.991 − 0.130i)9-s + (−0.357 + 1.05i)10-s + (1 − i)13-s + (−0.866 + 0.499i)16-s + (−0.130 + 0.991i)17-s + (−0.499 + 0.866i)18-s + (−0.617 − 0.923i)20-s + (0.186 − 0.142i)25-s + (0.184 + 1.40i)26-s + (−0.216 + 1.08i)29-s + (0.130 − 0.991i)32-s + ⋯ |
L(s) = 1 | + (−0.608 + 0.793i)2-s + (−0.258 − 0.965i)4-s + (1.05 − 0.357i)5-s + (0.923 + 0.382i)8-s + (0.991 − 0.130i)9-s + (−0.357 + 1.05i)10-s + (1 − i)13-s + (−0.866 + 0.499i)16-s + (−0.130 + 0.991i)17-s + (−0.499 + 0.866i)18-s + (−0.617 − 0.923i)20-s + (0.186 − 0.142i)25-s + (0.184 + 1.40i)26-s + (−0.216 + 1.08i)29-s + (0.130 − 0.991i)32-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.893−0.448i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.893−0.448i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.893−0.448i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(2579,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.893−0.448i)
|
Particular Values
L(21) |
≈ |
1.260490341 |
L(21) |
≈ |
1.260490341 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.608−0.793i)T |
| 7 | 1 |
| 17 | 1+(0.130−0.991i)T |
good | 3 | 1+(−0.991+0.130i)T2 |
| 5 | 1+(−1.05+0.357i)T+(0.793−0.608i)T2 |
| 11 | 1+(0.608−0.793i)T2 |
| 13 | 1+(−1+i)T−iT2 |
| 19 | 1+(−0.258−0.965i)T2 |
| 23 | 1+(0.991+0.130i)T2 |
| 29 | 1+(0.216−1.08i)T+(−0.923−0.382i)T2 |
| 31 | 1+(0.991−0.130i)T2 |
| 37 | 1+(−1.49−0.735i)T+(0.608+0.793i)T2 |
| 41 | 1+(0.0761+0.382i)T+(−0.923+0.382i)T2 |
| 43 | 1+(0.707+0.707i)T2 |
| 47 | 1+(−0.866−0.5i)T2 |
| 53 | 1+(1.83+0.241i)T+(0.965+0.258i)T2 |
| 59 | 1+(0.258−0.965i)T2 |
| 61 | 1+(1.29+1.47i)T+(−0.130+0.991i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1+(−0.382+0.923i)T2 |
| 73 | 1+(1.25+1.09i)T+(0.130+0.991i)T2 |
| 79 | 1+(−0.991−0.130i)T2 |
| 83 | 1+(0.707−0.707i)T2 |
| 89 | 1+(−0.866−0.5i)T2 |
| 97 | 1+(−1.63−0.324i)T+(0.923+0.382i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.925911487940695155658090908969, −8.065966568746956959050157990284, −7.52391157952636980027985164993, −6.33038074695391050446788874403, −6.19442592356842810173246289385, −5.25267308233358990546222721439, −4.51876462746256053539642016659, −3.38809986507536881825822977876, −1.83811639308141362873532887781, −1.20835503897156078869665729075,
1.26242599526066894770155284304, 2.06778309368915818642433088642, 2.89000326733841961606683478413, 4.06412250101464644010068383183, 4.60525947405653588351217057143, 5.89684590354402991110130771020, 6.59635666399401870136614512860, 7.36920567138313603483294043605, 8.076528755421906125418161609008, 9.220277042375867753857532785913