L(s) = 1 | + (−0.130 − 0.991i)2-s + (−0.965 + 0.258i)4-s + (−0.128 + 1.95i)5-s + (0.382 + 0.923i)8-s + (0.793 + 0.608i)9-s + (1.95 − 0.128i)10-s + (1 + i)13-s + (0.866 − 0.5i)16-s + (−0.793 + 0.608i)17-s + (0.499 − 0.866i)18-s + (−0.382 − 1.92i)20-s + (−2.82 − 0.371i)25-s + (0.860 − 1.12i)26-s + (0.324 + 0.216i)29-s + (−0.608 − 0.793i)32-s + ⋯ |
L(s) = 1 | + (−0.130 − 0.991i)2-s + (−0.965 + 0.258i)4-s + (−0.128 + 1.95i)5-s + (0.382 + 0.923i)8-s + (0.793 + 0.608i)9-s + (1.95 − 0.128i)10-s + (1 + i)13-s + (0.866 − 0.5i)16-s + (−0.793 + 0.608i)17-s + (0.499 − 0.866i)18-s + (−0.382 − 1.92i)20-s + (−2.82 − 0.371i)25-s + (0.860 − 1.12i)26-s + (0.324 + 0.216i)29-s + (−0.608 − 0.793i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.347 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.347 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9912457867\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9912457867\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.130 + 0.991i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.793 - 0.608i)T \) |
good | 3 | \( 1 + (-0.793 - 0.608i)T^{2} \) |
| 5 | \( 1 + (0.128 - 1.95i)T + (-0.991 - 0.130i)T^{2} \) |
| 11 | \( 1 + (-0.130 - 0.991i)T^{2} \) |
| 13 | \( 1 + (-1 - i)T + iT^{2} \) |
| 19 | \( 1 + (-0.965 + 0.258i)T^{2} \) |
| 23 | \( 1 + (0.793 - 0.608i)T^{2} \) |
| 29 | \( 1 + (-0.324 - 0.216i)T + (0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + (0.793 + 0.608i)T^{2} \) |
| 37 | \( 1 + (1.29 + 1.47i)T + (-0.130 + 0.991i)T^{2} \) |
| 41 | \( 1 + (0.923 - 0.617i)T + (0.382 - 0.923i)T^{2} \) |
| 43 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.607 + 0.465i)T + (0.258 - 0.965i)T^{2} \) |
| 59 | \( 1 + (0.965 + 0.258i)T^{2} \) |
| 61 | \( 1 + (-0.735 + 1.49i)T + (-0.608 - 0.793i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 73 | \( 1 + (0.349 - 0.172i)T + (0.608 - 0.793i)T^{2} \) |
| 79 | \( 1 + (-0.793 + 0.608i)T^{2} \) |
| 83 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 + (-1.93 - 0.517i)T + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.216 + 0.324i)T + (-0.382 - 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.060400196338761016817107315196, −8.302319822885855883034907232817, −7.42924270959493464038606678185, −6.79469199251326805906791774600, −6.11124090368320196409492683482, −4.88078585404604389826321261404, −3.85276675974790049312518160346, −3.53235781674946339323971651221, −2.30866672732066112728074324176, −1.79750003065891144287353001632,
0.66786727119881126711942151945, 1.50758829616401443202133940713, 3.52056645916355733395876619363, 4.29376998649282583500415983684, 4.93641175348457087717903501684, 5.57792977077306406378640655485, 6.38664147029516093054240544054, 7.24202283928280806683996924779, 8.062471248254033153252278119727, 8.728676690915642826902871405558