L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 1.5i)3-s + (−0.499 − 0.866i)4-s − 1.73·6-s − 0.999·8-s + (−1 + 1.73i)9-s + (−0.866 − 1.5i)11-s + (−0.866 + 1.49i)12-s − 13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (1 + 1.73i)18-s − 1.73·22-s + (0.866 + 1.49i)24-s + (−0.5 − 0.866i)25-s + (−0.5 + 0.866i)26-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 1.5i)3-s + (−0.499 − 0.866i)4-s − 1.73·6-s − 0.999·8-s + (−1 + 1.73i)9-s + (−0.866 − 1.5i)11-s + (−0.866 + 1.49i)12-s − 13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (1 + 1.73i)18-s − 1.73·22-s + (0.866 + 1.49i)24-s + (−0.5 − 0.866i)25-s + (−0.5 + 0.866i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3439922494\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3439922494\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + 1.73T + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.116556080658556640189013315974, −7.38643512297835426813599556757, −6.41211125030542698911522688627, −5.77427487029256289685927859270, −5.40841349069562449101373985487, −4.32747359206574185109780906838, −3.07380540530113312807222696984, −2.34984408453994711737628692473, −1.31824153352001322417227971608, −0.19625472632838879179832752607,
2.52473550059152230458130804148, 3.53857309532607205114071896618, 4.41065709988516126275875600245, 5.03876331686918251609013498655, 5.29216042312818692942098105083, 6.23831461657749057877131046693, 7.27505930644004895212895044547, 7.60591989301034614780207041384, 8.831895358681502998728009516566, 9.626334997842571290574074949998