L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 1.70i)5-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.707 + 1.70i)10-s − 1.00·16-s + (0.707 + 0.707i)17-s + 1.00·18-s + (−1.70 + 0.707i)20-s + (−1.70 + 1.70i)25-s + (−0.707 − 1.70i)29-s + (−0.707 − 0.707i)32-s + 1.00i·34-s + (0.707 + 0.707i)36-s + (1.70 − 0.707i)37-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 1.70i)5-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.707 + 1.70i)10-s − 1.00·16-s + (0.707 + 0.707i)17-s + 1.00·18-s + (−1.70 + 0.707i)20-s + (−1.70 + 1.70i)25-s + (−0.707 − 1.70i)29-s + (−0.707 − 0.707i)32-s + 1.00i·34-s + (0.707 + 0.707i)36-s + (1.70 − 0.707i)37-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.673−0.739i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(−0.673−0.739i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
−0.673−0.739i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(2059,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), −0.673−0.739i)
|
Particular Values
L(21) |
≈ |
2.141904986 |
L(21) |
≈ |
2.141904986 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 7 | 1 |
| 17 | 1+(−0.707−0.707i)T |
good | 3 | 1+(−0.707+0.707i)T2 |
| 5 | 1+(−0.707−1.70i)T+(−0.707+0.707i)T2 |
| 11 | 1+(−0.707−0.707i)T2 |
| 13 | 1−T2 |
| 19 | 1−iT2 |
| 23 | 1+(−0.707−0.707i)T2 |
| 29 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 31 | 1+(−0.707+0.707i)T2 |
| 37 | 1+(−1.70+0.707i)T+(0.707−0.707i)T2 |
| 41 | 1+(0.292−0.707i)T+(−0.707−0.707i)T2 |
| 43 | 1+iT2 |
| 47 | 1+T2 |
| 53 | 1+(1+i)T+iT2 |
| 59 | 1+iT2 |
| 61 | 1+(0.292−0.707i)T+(−0.707−0.707i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.707+0.707i)T2 |
| 73 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 79 | 1+(−0.707−0.707i)T2 |
| 83 | 1−iT2 |
| 89 | 1+2iT−T2 |
| 97 | 1+(−0.707−1.70i)T+(−0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.161511563119343540606500518318, −7.82562884592229213650325780499, −7.55424879790955622648732296622, −6.57032220503463674307292971235, −6.22901000901665781839665755070, −5.63198612189880790730157045095, −4.35716776850597121711549830772, −3.62707696532172022020501322927, −2.90474165750137057727457606987, −1.94827965416770219397599279817,
1.11342710516643518288797401479, 1.73998008984554966297433211330, 2.83461457848544409023271900029, 4.05975409333704124869233484045, 4.75249500590844874976955506936, 5.26899848961023729087418598942, 5.85304469049485541004284379128, 6.93437253246052987013893522412, 7.88717880989730488182322942049, 8.752627347151423413526107956341