L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 1.70i)5-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.707 + 1.70i)10-s − 1.00·16-s + (0.707 + 0.707i)17-s + 1.00·18-s + (−1.70 + 0.707i)20-s + (−1.70 + 1.70i)25-s + (−0.707 − 1.70i)29-s + (−0.707 − 0.707i)32-s + 1.00i·34-s + (0.707 + 0.707i)36-s + (1.70 − 0.707i)37-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.707 + 1.70i)5-s + (−0.707 + 0.707i)8-s + (0.707 − 0.707i)9-s + (−0.707 + 1.70i)10-s − 1.00·16-s + (0.707 + 0.707i)17-s + 1.00·18-s + (−1.70 + 0.707i)20-s + (−1.70 + 1.70i)25-s + (−0.707 − 1.70i)29-s + (−0.707 − 0.707i)32-s + 1.00i·34-s + (0.707 + 0.707i)36-s + (1.70 − 0.707i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.141904986\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.141904986\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1 + i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + 2iT - T^{2} \) |
| 97 | \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.161511563119343540606500518318, −7.82562884592229213650325780499, −7.55424879790955622648732296622, −6.57032220503463674307292971235, −6.22901000901665781839665755070, −5.63198612189880790730157045095, −4.35716776850597121711549830772, −3.62707696532172022020501322927, −2.90474165750137057727457606987, −1.94827965416770219397599279817,
1.11342710516643518288797401479, 1.73998008984554966297433211330, 2.83461457848544409023271900029, 4.05975409333704124869233484045, 4.75249500590844874976955506936, 5.26899848961023729087418598942, 5.85304469049485541004284379128, 6.93437253246052987013893522412, 7.88717880989730488182322942049, 8.752627347151423413526107956341