L(s) = 1 | − 16-s − 2·25-s + 4·37-s + 4·41-s − 4·53-s + 4·61-s + 8·101-s − 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
L(s) = 1 | − 16-s − 2·25-s + 4·37-s + 4·41-s − 4·53-s + 4·61-s + 8·101-s − 4·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{8} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 7^{8} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.732842717\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.732842717\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.38074750558724713506387760046, −5.99954975419966063869477084708, −5.92382771393812870142007529452, −5.77978260182117092063982908069, −5.58335395566535234691631687726, −5.40727290182896558775355125325, −4.95418161849566728379002367075, −4.79402301021264576183173810456, −4.76753043535797753058362060340, −4.34711649536263176711536211360, −4.21932873224493985530803065026, −4.14120816936939216910316474815, −3.97289982351400572450958247198, −3.66746285278900886454033567017, −3.32725907116285632353854040213, −3.07206091283863621809561178184, −2.95020549410106364208670631832, −2.62417097887203082597183717696, −2.21442304092380673199566575360, −2.18186718006145966775075437264, −2.16111172548121158707996751811, −1.66724438166004028089889012926, −1.19184740120769111915557366517, −0.821717434010725781486152411641, −0.65721834447309321850082619888,
0.65721834447309321850082619888, 0.821717434010725781486152411641, 1.19184740120769111915557366517, 1.66724438166004028089889012926, 2.16111172548121158707996751811, 2.18186718006145966775075437264, 2.21442304092380673199566575360, 2.62417097887203082597183717696, 2.95020549410106364208670631832, 3.07206091283863621809561178184, 3.32725907116285632353854040213, 3.66746285278900886454033567017, 3.97289982351400572450958247198, 4.14120816936939216910316474815, 4.21932873224493985530803065026, 4.34711649536263176711536211360, 4.76753043535797753058362060340, 4.79402301021264576183173810456, 4.95418161849566728379002367075, 5.40727290182896558775355125325, 5.58335395566535234691631687726, 5.77978260182117092063982908069, 5.92382771393812870142007529452, 5.99954975419966063869477084708, 6.38074750558724713506387760046