L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 + 1.70i)5-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (0.707 + 1.70i)10-s − 1.00·16-s + (−0.707 + 0.707i)17-s + 1.00·18-s + (1.70 + 0.707i)20-s + (−1.70 − 1.70i)25-s + (−0.707 + 1.70i)29-s + (−0.707 + 0.707i)32-s + 1.00i·34-s + (0.707 − 0.707i)36-s + (1.70 + 0.707i)37-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 + 1.70i)5-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (0.707 + 1.70i)10-s − 1.00·16-s + (−0.707 + 0.707i)17-s + 1.00·18-s + (1.70 + 0.707i)20-s + (−1.70 − 1.70i)25-s + (−0.707 + 1.70i)29-s + (−0.707 + 0.707i)32-s + 1.00i·34-s + (0.707 − 0.707i)36-s + (1.70 + 0.707i)37-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.673−0.739i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.673−0.739i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.673−0.739i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(1471,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.673−0.739i)
|
Particular Values
L(21) |
≈ |
1.397266792 |
L(21) |
≈ |
1.397266792 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 7 | 1 |
| 17 | 1+(0.707−0.707i)T |
good | 3 | 1+(−0.707−0.707i)T2 |
| 5 | 1+(0.707−1.70i)T+(−0.707−0.707i)T2 |
| 11 | 1+(−0.707+0.707i)T2 |
| 13 | 1−T2 |
| 19 | 1+iT2 |
| 23 | 1+(−0.707+0.707i)T2 |
| 29 | 1+(0.707−1.70i)T+(−0.707−0.707i)T2 |
| 31 | 1+(−0.707−0.707i)T2 |
| 37 | 1+(−1.70−0.707i)T+(0.707+0.707i)T2 |
| 41 | 1+(−0.292−0.707i)T+(−0.707+0.707i)T2 |
| 43 | 1−iT2 |
| 47 | 1+T2 |
| 53 | 1+(1−i)T−iT2 |
| 59 | 1−iT2 |
| 61 | 1+(−0.292−0.707i)T+(−0.707+0.707i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.707−0.707i)T2 |
| 73 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
| 79 | 1+(−0.707+0.707i)T2 |
| 83 | 1+iT2 |
| 89 | 1+2iT−T2 |
| 97 | 1+(0.707−1.70i)T+(−0.707−0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.083023257289648643906607610005, −7.932501119867819205251752377147, −7.30165656548185722679899766640, −6.57899616628961079871496279015, −5.99954975419966063869477084708, −4.79402301021264576183173810456, −4.14120816936939216910316474815, −3.32725907116285632353854040213, −2.62417097887203082597183717696, −1.66724438166004028089889012926,
0.65721834447309321850082619888, 2.21442304092380673199566575360, 3.66746285278900886454033567017, 4.21932873224493985530803065026, 4.76753043535797753058362060340, 5.58335395566535234691631687726, 6.38074750558724713506387760046, 7.31417859732256799371939285686, 7.87631664110201393720062173909, 8.546195963377316710289372268751