L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 + 1.70i)5-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (0.707 + 1.70i)10-s − 1.00·16-s + (−0.707 + 0.707i)17-s + 1.00·18-s + (1.70 + 0.707i)20-s + (−1.70 − 1.70i)25-s + (−0.707 + 1.70i)29-s + (−0.707 + 0.707i)32-s + 1.00i·34-s + (0.707 − 0.707i)36-s + (1.70 + 0.707i)37-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 + 1.70i)5-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (0.707 + 1.70i)10-s − 1.00·16-s + (−0.707 + 0.707i)17-s + 1.00·18-s + (1.70 + 0.707i)20-s + (−1.70 − 1.70i)25-s + (−0.707 + 1.70i)29-s + (−0.707 + 0.707i)32-s + 1.00i·34-s + (0.707 − 0.707i)36-s + (1.70 + 0.707i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.397266792\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.397266792\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.292 - 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1 - i)T - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (-0.292 - 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + 2iT - T^{2} \) |
| 97 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.083023257289648643906607610005, −7.932501119867819205251752377147, −7.30165656548185722679899766640, −6.57899616628961079871496279015, −5.99954975419966063869477084708, −4.79402301021264576183173810456, −4.14120816936939216910316474815, −3.32725907116285632353854040213, −2.62417097887203082597183717696, −1.66724438166004028089889012926,
0.65721834447309321850082619888, 2.21442304092380673199566575360, 3.66746285278900886454033567017, 4.21932873224493985530803065026, 4.76753043535797753058362060340, 5.58335395566535234691631687726, 6.38074750558724713506387760046, 7.31417859732256799371939285686, 7.87631664110201393720062173909, 8.546195963377316710289372268751