Properties

Label 4-3344e2-1.1-c0e2-0-1
Degree $4$
Conductor $11182336$
Sign $1$
Analytic cond. $2.78513$
Root an. cond. $1.29184$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 9-s + 2·11-s + 19-s + 25-s + 2·35-s − 2·43-s − 45-s + 49-s − 3·53-s − 2·55-s − 2·63-s − 4·77-s + 3·79-s − 2·83-s − 95-s + 3·97-s + 2·99-s + 3·121-s − 2·125-s + 127-s + 131-s − 2·133-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  − 5-s − 2·7-s + 9-s + 2·11-s + 19-s + 25-s + 2·35-s − 2·43-s − 45-s + 49-s − 3·53-s − 2·55-s − 2·63-s − 4·77-s + 3·79-s − 2·83-s − 95-s + 3·97-s + 2·99-s + 3·121-s − 2·125-s + 127-s + 131-s − 2·133-s + 137-s + 139-s + 149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11182336\)    =    \(2^{8} \cdot 11^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2.78513\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11182336,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9652838598\)
\(L(\frac12)\) \(\approx\) \(0.9652838598\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
19$C_2$ \( 1 - T + T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
83$C_2$ \( ( 1 + T + T^{2} )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.131009534053220939561174464906, −8.781709953879737035262689963189, −8.106058885971312147726734417527, −7.893658345588534422232579627636, −7.45191202393599930272302479161, −7.02186097365728615672213171817, −6.63350743497419124202106247715, −6.43345799203336557288264208870, −6.40826105172078709610623400627, −5.66319321749649679007861006794, −5.09324899292741106140592203599, −4.63596351113743426226949989137, −4.33183717411393938849532959941, −3.76412889198418440304219515925, −3.40762661930304385902763075025, −3.32729503557027322658926649766, −2.82994591263405118069470157563, −1.79545191185697801519104198143, −1.44126639225351194546092073727, −0.62839135175571514933065219040, 0.62839135175571514933065219040, 1.44126639225351194546092073727, 1.79545191185697801519104198143, 2.82994591263405118069470157563, 3.32729503557027322658926649766, 3.40762661930304385902763075025, 3.76412889198418440304219515925, 4.33183717411393938849532959941, 4.63596351113743426226949989137, 5.09324899292741106140592203599, 5.66319321749649679007861006794, 6.40826105172078709610623400627, 6.43345799203336557288264208870, 6.63350743497419124202106247715, 7.02186097365728615672213171817, 7.45191202393599930272302479161, 7.893658345588534422232579627636, 8.106058885971312147726734417527, 8.781709953879737035262689963189, 9.131009534053220939561174464906

Graph of the $Z$-function along the critical line