L(s) = 1 | + (−0.564 + 1.73i)5-s + (0.169 − 0.122i)7-s + (−0.309 − 0.951i)9-s + (−0.104 + 0.994i)11-s + (−1.41 − 0.459i)17-s + (0.809 + 0.587i)19-s + 1.90i·23-s + (−1.89 − 1.37i)25-s + (0.118 + 0.363i)35-s − 1.95·43-s + 1.82·45-s + (0.244 − 0.336i)47-s + (−0.295 + 0.909i)49-s + (−1.66 − 0.743i)55-s + (0.395 + 0.128i)61-s + ⋯ |
L(s) = 1 | + (−0.564 + 1.73i)5-s + (0.169 − 0.122i)7-s + (−0.309 − 0.951i)9-s + (−0.104 + 0.994i)11-s + (−1.41 − 0.459i)17-s + (0.809 + 0.587i)19-s + 1.90i·23-s + (−1.89 − 1.37i)25-s + (0.118 + 0.363i)35-s − 1.95·43-s + 1.82·45-s + (0.244 − 0.336i)47-s + (−0.295 + 0.909i)49-s + (−1.66 − 0.743i)55-s + (0.395 + 0.128i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.876 - 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.876 - 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6767831652\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6767831652\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (0.104 - 0.994i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
good | 3 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (0.564 - 1.73i)T + (-0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.169 + 0.122i)T + (0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (1.41 + 0.459i)T + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - 1.90iT - T^{2} \) |
| 29 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 1.95T + T^{2} \) |
| 47 | \( 1 + (-0.244 + 0.336i)T + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.395 - 0.128i)T + (0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (1.01 + 1.40i)T + (-0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.316544906800215807356322511096, −8.186399603191011518847603370261, −7.41092161948813524368963609172, −6.97393984756347253400398489230, −6.36996866186200417115440031379, −5.41671108874240436769763898844, −4.29055352165265143412713395533, −3.51206492617318323793373370596, −2.89738243606557888317671927055, −1.79461359849255410039076567312,
0.38792409943835676314415812516, 1.70089646570925218635271323104, 2.80711404365138217518525547067, 4.03794874024182140718880009057, 4.76417709571320855459387892147, 5.19811492850546196788906682489, 6.10382676216844080341930199390, 7.09957496007053998745188380414, 8.125716550247771505765434437287, 8.587079894440288461408458172606