Properties

Label 2-3344-1.1-c1-0-64
Degree $2$
Conductor $3344$
Sign $-1$
Analytic cond. $26.7019$
Root an. cond. $5.16739$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.19·3-s + 4.07·5-s − 3.61·7-s − 1.56·9-s + 11-s − 1.47·13-s − 4.87·15-s − 3.27·17-s − 19-s + 4.32·21-s + 7.45·23-s + 11.6·25-s + 5.46·27-s + 1.02·29-s − 1.64·31-s − 1.19·33-s − 14.7·35-s − 6.71·37-s + 1.76·39-s − 3.92·41-s − 5.38·43-s − 6.39·45-s + 3.71·47-s + 6.09·49-s + 3.91·51-s − 0.102·53-s + 4.07·55-s + ⋯
L(s)  = 1  − 0.690·3-s + 1.82·5-s − 1.36·7-s − 0.523·9-s + 0.301·11-s − 0.410·13-s − 1.25·15-s − 0.793·17-s − 0.229·19-s + 0.944·21-s + 1.55·23-s + 2.32·25-s + 1.05·27-s + 0.190·29-s − 0.296·31-s − 0.208·33-s − 2.49·35-s − 1.10·37-s + 0.283·39-s − 0.612·41-s − 0.820·43-s − 0.953·45-s + 0.542·47-s + 0.870·49-s + 0.547·51-s − 0.0141·53-s + 0.549·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3344\)    =    \(2^{4} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(26.7019\)
Root analytic conductor: \(5.16739\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3344,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 - T \)
19 \( 1 + T \)
good3 \( 1 + 1.19T + 3T^{2} \)
5 \( 1 - 4.07T + 5T^{2} \)
7 \( 1 + 3.61T + 7T^{2} \)
13 \( 1 + 1.47T + 13T^{2} \)
17 \( 1 + 3.27T + 17T^{2} \)
23 \( 1 - 7.45T + 23T^{2} \)
29 \( 1 - 1.02T + 29T^{2} \)
31 \( 1 + 1.64T + 31T^{2} \)
37 \( 1 + 6.71T + 37T^{2} \)
41 \( 1 + 3.92T + 41T^{2} \)
43 \( 1 + 5.38T + 43T^{2} \)
47 \( 1 - 3.71T + 47T^{2} \)
53 \( 1 + 0.102T + 53T^{2} \)
59 \( 1 + 13.2T + 59T^{2} \)
61 \( 1 + 6.49T + 61T^{2} \)
67 \( 1 - 3.70T + 67T^{2} \)
71 \( 1 + 6.32T + 71T^{2} \)
73 \( 1 + 1.37T + 73T^{2} \)
79 \( 1 + 13.6T + 79T^{2} \)
83 \( 1 + 5.44T + 83T^{2} \)
89 \( 1 - 12.1T + 89T^{2} \)
97 \( 1 + 13.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.602959830519736450429035103709, −6.98851379764319489036766953933, −6.65670511448495770766258014692, −6.01617336471164392546328907233, −5.40382704741309113114334322312, −4.68603211203720698716993593959, −3.20717349582467339245621173779, −2.60896616369521154740192171692, −1.46153496748798818328200574360, 0, 1.46153496748798818328200574360, 2.60896616369521154740192171692, 3.20717349582467339245621173779, 4.68603211203720698716993593959, 5.40382704741309113114334322312, 6.01617336471164392546328907233, 6.65670511448495770766258014692, 6.98851379764319489036766953933, 8.602959830519736450429035103709

Graph of the $Z$-function along the critical line