Properties

Label 4-336e2-1.1-c5e2-0-8
Degree 44
Conductor 112896112896
Sign 11
Analytic cond. 2904.022904.02
Root an. cond. 7.340917.34091
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18·3-s − 64·5-s − 98·7-s + 243·9-s − 540·11-s + 204·13-s − 1.15e3·15-s + 304·17-s + 1.12e3·19-s − 1.76e3·21-s + 940·23-s − 2.18e3·25-s + 2.91e3·27-s + 932·29-s + 1.64e4·31-s − 9.72e3·33-s + 6.27e3·35-s − 1.76e3·37-s + 3.67e3·39-s − 2.55e3·41-s + 2.46e4·43-s − 1.55e4·45-s + 3.67e4·47-s + 7.20e3·49-s + 5.47e3·51-s + 9.16e3·53-s + 3.45e4·55-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.14·5-s − 0.755·7-s + 9-s − 1.34·11-s + 0.334·13-s − 1.32·15-s + 0.255·17-s + 0.711·19-s − 0.872·21-s + 0.370·23-s − 0.698·25-s + 0.769·27-s + 0.205·29-s + 3.06·31-s − 1.55·33-s + 0.865·35-s − 0.211·37-s + 0.386·39-s − 0.237·41-s + 2.03·43-s − 1.14·45-s + 2.42·47-s + 3/7·49-s + 0.294·51-s + 0.448·53-s + 1.54·55-s + ⋯

Functional equation

Λ(s)=(112896s/2ΓC(s)2L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(112896s/2ΓC(s+5/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 112896 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 112896112896    =    2832722^{8} \cdot 3^{2} \cdot 7^{2}
Sign: 11
Analytic conductor: 2904.022904.02
Root analytic conductor: 7.340917.34091
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 112896, ( :5/2,5/2), 1)(4,\ 112896,\ (\ :5/2, 5/2),\ 1)

Particular Values

L(3)L(3) \approx 3.8646064273.864606427
L(12)L(\frac12) \approx 3.8646064273.864606427
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3C1C_1 (1p2T)2 ( 1 - p^{2} T )^{2}
7C1C_1 (1+p2T)2 ( 1 + p^{2} T )^{2}
good5D4D_{4} 1+64T+6278T2+64p5T3+p10T4 1 + 64 T + 6278 T^{2} + 64 p^{5} T^{3} + p^{10} T^{4}
11D4D_{4} 1+540T+170902T2+540p5T3+p10T4 1 + 540 T + 170902 T^{2} + 540 p^{5} T^{3} + p^{10} T^{4}
13D4D_{4} 1204T+498014T2204p5T3+p10T4 1 - 204 T + 498014 T^{2} - 204 p^{5} T^{3} + p^{10} T^{4}
17D4D_{4} 1304T+272222T2304p5T3+p10T4 1 - 304 T + 272222 T^{2} - 304 p^{5} T^{3} + p^{10} T^{4}
19D4D_{4} 11120T188298T21120p5T3+p10T4 1 - 1120 T - 188298 T^{2} - 1120 p^{5} T^{3} + p^{10} T^{4}
23D4D_{4} 1940T+8072750T2940p5T3+p10T4 1 - 940 T + 8072750 T^{2} - 940 p^{5} T^{3} + p^{10} T^{4}
29D4D_{4} 1932T+41139854T2932p5T3+p10T4 1 - 932 T + 41139854 T^{2} - 932 p^{5} T^{3} + p^{10} T^{4}
31D4D_{4} 116408T+122456382T216408p5T3+p10T4 1 - 16408 T + 122456382 T^{2} - 16408 p^{5} T^{3} + p^{10} T^{4}
37D4D_{4} 1+1764T+117649454T2+1764p5T3+p10T4 1 + 1764 T + 117649454 T^{2} + 1764 p^{5} T^{3} + p^{10} T^{4}
41D4D_{4} 1+2552T47492578T2+2552p5T3+p10T4 1 + 2552 T - 47492578 T^{2} + 2552 p^{5} T^{3} + p^{10} T^{4}
43D4D_{4} 124632T+444919878T224632p5T3+p10T4 1 - 24632 T + 444919878 T^{2} - 24632 p^{5} T^{3} + p^{10} T^{4}
47D4D_{4} 136760T+728144990T236760p5T3+p10T4 1 - 36760 T + 728144990 T^{2} - 36760 p^{5} T^{3} + p^{10} T^{4}
53D4D_{4} 19164T+526936814T29164p5T3+p10T4 1 - 9164 T + 526936814 T^{2} - 9164 p^{5} T^{3} + p^{10} T^{4}
59D4D_{4} 139888T+1364348230T239888p5T3+p10T4 1 - 39888 T + 1364348230 T^{2} - 39888 p^{5} T^{3} + p^{10} T^{4}
61D4D_{4} 1+25084T+1327295502T2+25084p5T3+p10T4 1 + 25084 T + 1327295502 T^{2} + 25084 p^{5} T^{3} + p^{10} T^{4}
67D4D_{4} 12592T+466901846T22592p5T3+p10T4 1 - 2592 T + 466901846 T^{2} - 2592 p^{5} T^{3} + p^{10} T^{4}
71D4D_{4} 135508T+2992314574T235508p5T3+p10T4 1 - 35508 T + 2992314574 T^{2} - 35508 p^{5} T^{3} + p^{10} T^{4}
73D4D_{4} 1+17188T+3868575366T2+17188p5T3+p10T4 1 + 17188 T + 3868575366 T^{2} + 17188 p^{5} T^{3} + p^{10} T^{4}
79D4D_{4} 195800T+6912129054T295800p5T3+p10T4 1 - 95800 T + 6912129054 T^{2} - 95800 p^{5} T^{3} + p^{10} T^{4}
83D4D_{4} 1+65352T+5470335958T2+65352p5T3+p10T4 1 + 65352 T + 5470335958 T^{2} + 65352 p^{5} T^{3} + p^{10} T^{4}
89D4D_{4} 1+23000T+9266496062T2+23000p5T3+p10T4 1 + 23000 T + 9266496062 T^{2} + 23000 p^{5} T^{3} + p^{10} T^{4}
97D4D_{4} 1+108388T+14152685814T2+108388p5T3+p10T4 1 + 108388 T + 14152685814 T^{2} + 108388 p^{5} T^{3} + p^{10} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.76369386288637598233115183051, −10.48108282958140639165345696746, −9.796871795521251433747920260483, −9.792923732357535811659437980389, −8.877903386482260819738267938439, −8.643817319318985614139412850841, −7.921472774005890649044041785065, −7.902888211080406742560822979675, −7.22335309741655018471536186417, −6.97915552497176790829687037549, −5.90921688628840550378988581801, −5.80387098553843759783705087714, −4.58345863832954192183181489964, −4.52589599392285324292687284254, −3.47167453273810960455547794605, −3.46449914107610976806436296690, −2.50478223405585195365999899732, −2.35678817938169513331655673666, −0.873912671042865415000643638330, −0.63614273554842050961409129086, 0.63614273554842050961409129086, 0.873912671042865415000643638330, 2.35678817938169513331655673666, 2.50478223405585195365999899732, 3.46449914107610976806436296690, 3.47167453273810960455547794605, 4.52589599392285324292687284254, 4.58345863832954192183181489964, 5.80387098553843759783705087714, 5.90921688628840550378988581801, 6.97915552497176790829687037549, 7.22335309741655018471536186417, 7.902888211080406742560822979675, 7.921472774005890649044041785065, 8.643817319318985614139412850841, 8.877903386482260819738267938439, 9.792923732357535811659437980389, 9.796871795521251433747920260483, 10.48108282958140639165345696746, 10.76369386288637598233115183051

Graph of the ZZ-function along the critical line