L(s) = 1 | + 18·3-s − 64·5-s − 98·7-s + 243·9-s − 540·11-s + 204·13-s − 1.15e3·15-s + 304·17-s + 1.12e3·19-s − 1.76e3·21-s + 940·23-s − 2.18e3·25-s + 2.91e3·27-s + 932·29-s + 1.64e4·31-s − 9.72e3·33-s + 6.27e3·35-s − 1.76e3·37-s + 3.67e3·39-s − 2.55e3·41-s + 2.46e4·43-s − 1.55e4·45-s + 3.67e4·47-s + 7.20e3·49-s + 5.47e3·51-s + 9.16e3·53-s + 3.45e4·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1.14·5-s − 0.755·7-s + 9-s − 1.34·11-s + 0.334·13-s − 1.32·15-s + 0.255·17-s + 0.711·19-s − 0.872·21-s + 0.370·23-s − 0.698·25-s + 0.769·27-s + 0.205·29-s + 3.06·31-s − 1.55·33-s + 0.865·35-s − 0.211·37-s + 0.386·39-s − 0.237·41-s + 2.03·43-s − 1.14·45-s + 2.42·47-s + 3/7·49-s + 0.294·51-s + 0.448·53-s + 1.54·55-s + ⋯ |
Λ(s)=(=(112896s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(112896s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
112896
= 28⋅32⋅72
|
Sign: |
1
|
Analytic conductor: |
2904.02 |
Root analytic conductor: |
7.34091 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 112896, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
3.864606427 |
L(21) |
≈ |
3.864606427 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−p2T)2 |
| 7 | C1 | (1+p2T)2 |
good | 5 | D4 | 1+64T+6278T2+64p5T3+p10T4 |
| 11 | D4 | 1+540T+170902T2+540p5T3+p10T4 |
| 13 | D4 | 1−204T+498014T2−204p5T3+p10T4 |
| 17 | D4 | 1−304T+272222T2−304p5T3+p10T4 |
| 19 | D4 | 1−1120T−188298T2−1120p5T3+p10T4 |
| 23 | D4 | 1−940T+8072750T2−940p5T3+p10T4 |
| 29 | D4 | 1−932T+41139854T2−932p5T3+p10T4 |
| 31 | D4 | 1−16408T+122456382T2−16408p5T3+p10T4 |
| 37 | D4 | 1+1764T+117649454T2+1764p5T3+p10T4 |
| 41 | D4 | 1+2552T−47492578T2+2552p5T3+p10T4 |
| 43 | D4 | 1−24632T+444919878T2−24632p5T3+p10T4 |
| 47 | D4 | 1−36760T+728144990T2−36760p5T3+p10T4 |
| 53 | D4 | 1−9164T+526936814T2−9164p5T3+p10T4 |
| 59 | D4 | 1−39888T+1364348230T2−39888p5T3+p10T4 |
| 61 | D4 | 1+25084T+1327295502T2+25084p5T3+p10T4 |
| 67 | D4 | 1−2592T+466901846T2−2592p5T3+p10T4 |
| 71 | D4 | 1−35508T+2992314574T2−35508p5T3+p10T4 |
| 73 | D4 | 1+17188T+3868575366T2+17188p5T3+p10T4 |
| 79 | D4 | 1−95800T+6912129054T2−95800p5T3+p10T4 |
| 83 | D4 | 1+65352T+5470335958T2+65352p5T3+p10T4 |
| 89 | D4 | 1+23000T+9266496062T2+23000p5T3+p10T4 |
| 97 | D4 | 1+108388T+14152685814T2+108388p5T3+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76369386288637598233115183051, −10.48108282958140639165345696746, −9.796871795521251433747920260483, −9.792923732357535811659437980389, −8.877903386482260819738267938439, −8.643817319318985614139412850841, −7.921472774005890649044041785065, −7.902888211080406742560822979675, −7.22335309741655018471536186417, −6.97915552497176790829687037549, −5.90921688628840550378988581801, −5.80387098553843759783705087714, −4.58345863832954192183181489964, −4.52589599392285324292687284254, −3.47167453273810960455547794605, −3.46449914107610976806436296690, −2.50478223405585195365999899732, −2.35678817938169513331655673666, −0.873912671042865415000643638330, −0.63614273554842050961409129086,
0.63614273554842050961409129086, 0.873912671042865415000643638330, 2.35678817938169513331655673666, 2.50478223405585195365999899732, 3.46449914107610976806436296690, 3.47167453273810960455547794605, 4.52589599392285324292687284254, 4.58345863832954192183181489964, 5.80387098553843759783705087714, 5.90921688628840550378988581801, 6.97915552497176790829687037549, 7.22335309741655018471536186417, 7.902888211080406742560822979675, 7.921472774005890649044041785065, 8.643817319318985614139412850841, 8.877903386482260819738267938439, 9.792923732357535811659437980389, 9.796871795521251433747920260483, 10.48108282958140639165345696746, 10.76369386288637598233115183051