L(s) = 1 | + 1.33i·2-s − 0.790·4-s + 0.279i·8-s − 1.16·16-s + 1.82i·17-s − 1.33·19-s + 0.209i·23-s + 1.82·31-s − 1.27i·32-s − 2.44·34-s − 1.79i·38-s − 0.279·46-s + 0.618i·47-s − 49-s + 1.95i·53-s + ⋯ |
L(s) = 1 | + 1.33i·2-s − 0.790·4-s + 0.279i·8-s − 1.16·16-s + 1.82i·17-s − 1.33·19-s + 0.209i·23-s + 1.82·31-s − 1.27i·32-s − 2.44·34-s − 1.79i·38-s − 0.279·46-s + 0.618i·47-s − 49-s + 1.95i·53-s + ⋯ |
Λ(s)=(=(3375s/2ΓC(s)L(s)−Λ(1−s)
Λ(s)=(=(3375s/2ΓC(s)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
3375
= 33⋅53
|
Sign: |
−1
|
Analytic conductor: |
1.68434 |
Root analytic conductor: |
1.29782 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3375(1376,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3375, ( :0), −1)
|
Particular Values
L(21) |
≈ |
1.049446922 |
L(21) |
≈ |
1.049446922 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1−1.33iT−T2 |
| 7 | 1+T2 |
| 11 | 1−T2 |
| 13 | 1+T2 |
| 17 | 1−1.82iT−T2 |
| 19 | 1+1.33T+T2 |
| 23 | 1−0.209iT−T2 |
| 29 | 1−T2 |
| 31 | 1−1.82T+T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1−0.618iT−T2 |
| 53 | 1−1.95iT−T2 |
| 59 | 1−T2 |
| 61 | 1+1.95T+T2 |
| 67 | 1+T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−1.95T+T2 |
| 83 | 1−1.95iT−T2 |
| 89 | 1−T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.825222737480490100230818227444, −8.154570927242880399863047237480, −7.83745466537385128034347356573, −6.71546551106570761506650132229, −6.29259195118030257700162013294, −5.72388213842788098851298998120, −4.65317491767754539981333880651, −4.10556150031445727635030103659, −2.79407767424672084932317844664, −1.66656515019787610549979213440,
0.60509716381761286833321176178, 1.91836205548493902795633301186, 2.69867211466158488887812484968, 3.43224047465848575120971854693, 4.48122096768270992876452055487, 4.96673405790260399561103164244, 6.31324908031131142853839407029, 6.82577775678443202043494634617, 7.81729282935822541065844827956, 8.666534867949707468184752699091