L(s) = 1 | + 1.33i·2-s − 0.790·4-s + 0.279i·8-s − 1.16·16-s + 1.82i·17-s − 1.33·19-s + 0.209i·23-s + 1.82·31-s − 1.27i·32-s − 2.44·34-s − 1.79i·38-s − 0.279·46-s + 0.618i·47-s − 49-s + 1.95i·53-s + ⋯ |
L(s) = 1 | + 1.33i·2-s − 0.790·4-s + 0.279i·8-s − 1.16·16-s + 1.82i·17-s − 1.33·19-s + 0.209i·23-s + 1.82·31-s − 1.27i·32-s − 2.44·34-s − 1.79i·38-s − 0.279·46-s + 0.618i·47-s − 49-s + 1.95i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.049446922\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.049446922\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 1.33iT - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - 1.82iT - T^{2} \) |
| 19 | \( 1 + 1.33T + T^{2} \) |
| 23 | \( 1 - 0.209iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.82T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - 0.618iT - T^{2} \) |
| 53 | \( 1 - 1.95iT - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 1.95T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 1.95T + T^{2} \) |
| 83 | \( 1 - 1.95iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.825222737480490100230818227444, −8.154570927242880399863047237480, −7.83745466537385128034347356573, −6.71546551106570761506650132229, −6.29259195118030257700162013294, −5.72388213842788098851298998120, −4.65317491767754539981333880651, −4.10556150031445727635030103659, −2.79407767424672084932317844664, −1.66656515019787610549979213440,
0.60509716381761286833321176178, 1.91836205548493902795633301186, 2.69867211466158488887812484968, 3.43224047465848575120971854693, 4.48122096768270992876452055487, 4.96673405790260399561103164244, 6.31324908031131142853839407029, 6.82577775678443202043494634617, 7.81729282935822541065844827956, 8.666534867949707468184752699091