L(s) = 1 | + 1.82i·2-s − 2.33·4-s − 2.44i·8-s + 2.12·16-s − 1.95i·17-s − 1.82·19-s − 1.33i·23-s − 1.95·31-s + 1.44i·32-s + 3.57·34-s − 3.33i·38-s + 2.44·46-s − 1.61i·47-s − 49-s + 0.209i·53-s + ⋯ |
L(s) = 1 | + 1.82i·2-s − 2.33·4-s − 2.44i·8-s + 2.12·16-s − 1.95i·17-s − 1.82·19-s − 1.33i·23-s − 1.95·31-s + 1.44i·32-s + 3.57·34-s − 3.33i·38-s + 2.44·46-s − 1.61i·47-s − 49-s + 0.209i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4934673226\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4934673226\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 1.82iT - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + 1.95iT - T^{2} \) |
| 19 | \( 1 + 1.82T + T^{2} \) |
| 23 | \( 1 + 1.33iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + 1.95T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.61iT - T^{2} \) |
| 53 | \( 1 - 0.209iT - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 0.209T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 0.209T + T^{2} \) |
| 83 | \( 1 - 0.209iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.717264712716054537128525624295, −7.906527286251642073995642334849, −7.15106380006571344023232963896, −6.69214490164254775148805924891, −5.95420778777228819897130092559, −5.08489111882806646051148188378, −4.58733612137639498434243925582, −3.65401444200827237478620781999, −2.29642077818196458777941923242, −0.28790709775048257262888530787,
1.56062405406771046491979877722, 2.04440955693775002631801303930, 3.26461522100164185967484200541, 3.89168356983238406897511778764, 4.53367544624759941134443907771, 5.58742358961995843535992270371, 6.34305891947895765050659309041, 7.60876447986094351396841774604, 8.435397445188503102837135430982, 8.955515271445652244572887865592