L(s) = 1 | + (1.40 + 1.40i)2-s + 2.95i·4-s + (−2.75 + 2.75i)8-s − 4.78·16-s + (1.05 + 1.05i)17-s − 0.209i·19-s + (−0.294 + 0.294i)23-s − 1.33·31-s + (−3.97 − 3.97i)32-s + 2.95i·34-s + (0.294 − 0.294i)38-s − 0.827·46-s + (0.831 + 0.831i)47-s − i·49-s + (0.575 − 0.575i)53-s + ⋯ |
L(s) = 1 | + (1.40 + 1.40i)2-s + 2.95i·4-s + (−2.75 + 2.75i)8-s − 4.78·16-s + (1.05 + 1.05i)17-s − 0.209i·19-s + (−0.294 + 0.294i)23-s − 1.33·31-s + (−3.97 − 3.97i)32-s + 2.95i·34-s + (0.294 − 0.294i)38-s − 0.827·46-s + (0.831 + 0.831i)47-s − i·49-s + (0.575 − 0.575i)53-s + ⋯ |
Λ(s)=(=(3375s/2ΓC(s)L(s)−Λ(1−s)
Λ(s)=(=(3375s/2ΓC(s)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
3375
= 33⋅53
|
Sign: |
−1
|
Analytic conductor: |
1.68434 |
Root analytic conductor: |
1.29782 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3375(1432,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3375, ( :0), −1)
|
Particular Values
L(21) |
≈ |
2.444870660 |
L(21) |
≈ |
2.444870660 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(−1.40−1.40i)T+iT2 |
| 7 | 1+iT2 |
| 11 | 1+T2 |
| 13 | 1−iT2 |
| 17 | 1+(−1.05−1.05i)T+iT2 |
| 19 | 1+0.209iT−T2 |
| 23 | 1+(0.294−0.294i)T−iT2 |
| 29 | 1−T2 |
| 31 | 1+1.33T+T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1−iT2 |
| 47 | 1+(−0.831−0.831i)T+iT2 |
| 53 | 1+(−0.575+0.575i)T−iT2 |
| 59 | 1−T2 |
| 61 | 1−1.82T+T2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1−iT2 |
| 79 | 1+1.82iT−T2 |
| 83 | 1+(0.575−0.575i)T−iT2 |
| 89 | 1−T2 |
| 97 | 1+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.707248398435790259416492649657, −8.167382709151010676479120769124, −7.42190366085116364974357928470, −6.89574925692158753917385695927, −5.92064490874512054635908200962, −5.59612685501772520913413410014, −4.72479917295082360887864063188, −3.83177943084697839795209948799, −3.35296993191824917866157549070, −2.15468120209287805675107230215,
0.922265858554594501490798561337, 2.05259722822569922707255922239, 2.87889391208419212531473712069, 3.67039222024123940723395906997, 4.35881016260369444063880672141, 5.34453251766047044615205563134, 5.64041006078442877422895961344, 6.66171079726048173470960738635, 7.45091301345448680029434584173, 8.767623984785994925017958332421