L(s) = 1 | + (1.40 + 1.40i)2-s + 2.95i·4-s + (−2.75 + 2.75i)8-s − 4.78·16-s + (1.05 + 1.05i)17-s − 0.209i·19-s + (−0.294 + 0.294i)23-s − 1.33·31-s + (−3.97 − 3.97i)32-s + 2.95i·34-s + (0.294 − 0.294i)38-s − 0.827·46-s + (0.831 + 0.831i)47-s − i·49-s + (0.575 − 0.575i)53-s + ⋯ |
L(s) = 1 | + (1.40 + 1.40i)2-s + 2.95i·4-s + (−2.75 + 2.75i)8-s − 4.78·16-s + (1.05 + 1.05i)17-s − 0.209i·19-s + (−0.294 + 0.294i)23-s − 1.33·31-s + (−3.97 − 3.97i)32-s + 2.95i·34-s + (0.294 − 0.294i)38-s − 0.827·46-s + (0.831 + 0.831i)47-s − i·49-s + (0.575 − 0.575i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.444870660\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.444870660\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-1.40 - 1.40i)T + iT^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + (-1.05 - 1.05i)T + iT^{2} \) |
| 19 | \( 1 + 0.209iT - T^{2} \) |
| 23 | \( 1 + (0.294 - 0.294i)T - iT^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + 1.33T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-0.831 - 0.831i)T + iT^{2} \) |
| 53 | \( 1 + (-0.575 + 0.575i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.82T + T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + 1.82iT - T^{2} \) |
| 83 | \( 1 + (0.575 - 0.575i)T - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.707248398435790259416492649657, −8.167382709151010676479120769124, −7.42190366085116364974357928470, −6.89574925692158753917385695927, −5.92064490874512054635908200962, −5.59612685501772520913413410014, −4.72479917295082360887864063188, −3.83177943084697839795209948799, −3.35296993191824917866157549070, −2.15468120209287805675107230215,
0.922265858554594501490798561337, 2.05259722822569922707255922239, 2.87889391208419212531473712069, 3.67039222024123940723395906997, 4.35881016260369444063880672141, 5.34453251766047044615205563134, 5.64041006078442877422895961344, 6.66171079726048173470960738635, 7.45091301345448680029434584173, 8.767623984785994925017958332421